AoPS Community

Bosnia and Herzegovina European Girls Mathematical Olympiad TST 2018

www.artofproblemsolving.com/community/c732447
by gobathegreat

- \quad Sarajevo, February 10th

1 a) Prove that there exists 5 nonnegative real numbers with sum equal to 1 , such that no matter how we arrange them on circle, two neighboring numbers exist with product not less than $\frac{1}{9}$ a) Prove that for every 5 nonnegative real numbers with sum equal to 1 , we can arrange them on circle, such that product of every two neighboring numbers is not greater than $\frac{1}{9}$

2 Prove that for every pair of positive integers (m, n), bigger than 2, there exists positive integer k and numbers $a_{0}, a_{1}, \ldots, a_{k}$, which are bigger than 2 , such that $a_{0}=m, a_{1}=n$ and for all $i=0,1, \ldots, k-1$ holds

$$
a_{i}+a_{i+1} \mid a_{i} a_{i+1}+1
$$

3 Let O be a circumcenter of acute triangle $A B C$ and let O_{1} and O_{2} be circumcenters of triangles $O A B$ and $O A C$, respectively. Circumcircles of triangles $O A B$ and $O A C$ intersect side $B C$ in points $D(D \neq B)$ and $E(E \neq C)$, respectively. Perpendicular bisector of side $B C$ intersects side $A C$ in point $F(F \neq A)$. Prove that circumcenter of triangle $A D E$ lies on $A C$ iff F lies on line $O_{1} O_{2}$

4 It is given positive integer n. Let $a_{1}, a_{2}, \ldots, a_{n}$ be positive integers with sum $2 S, S \in \mathbb{N}$. Positive integer k is called separator if you can pick k different indices $i_{1}, i_{2}, \ldots, i_{k}$ from set $\{1,2, \ldots, n\}$ such that $a_{i_{1}}+a_{i_{2}}+\ldots+a_{i_{k}}=S$. Find, in terms of n, maximum number of separators

