AoPS Community

5th IGO

www.artofproblemsolving.com/community/c732609
by parmenides51, bgn

- Elementary

1 As shown below, there is a 40×30 paper with a filled 10×5 rectangle inside of it. We want to cut out the filled rectangle from the paper using four straight cuts. Each straight cut is a straight line that divides the paper into two pieces, and we keep the piece containing the filled rectangle. The goal is to minimize the total length of the straight cuts. How to achieve this goal, and what is that minimized length? Show the correct cuts and write the final answer. There is no need to prove the answer.
Proposed by Morteza Saghafian
2 Convex hexagon $A_{1} A_{2} A_{3} A_{4} A_{5} A_{6}$ lies in the interior of convex hexagon $B_{1} B_{2} B_{3} B_{4} B_{5} B_{6}$ such that $A_{1} A_{2}\left\|B_{1} B_{2}, A_{2} A_{3}\right\| B_{2} B_{3}, \ldots, A_{6} A_{1} \| B_{6} B_{1}$. Prove that the areas of simple hexagons $A_{1} B_{2} A_{3} B_{4} A_{5} B_{6}$ and $B_{1} A_{2} B_{3} A_{4} B_{5} A_{6}$ are equal. (A simple hexagon is a hexagon which does not intersect itself.)

Proposed by Hirad Aalipanah - Mahdi Etesamifard
3 In the given figure, $A B C D$ is a parallelogram. We know that $\angle D=60^{\circ}, A D=2$ and $A B=\sqrt{3}+1$. Point M is the midpoint of $A D$. Segment $C K$ is the angle bisector of C. Find the angle $C K B$.
Proposed by Mahdi Etesamifard
4 There are two circles with centers O_{1}, O_{2} lie inside of circle ω and are tangent to it. Chord $A B$ of ω is tangent to these two circles such that they lie on opposite sides of this chord. Prove that $\angle O_{1} A O_{2}+\angle O_{1} B O_{2}>90^{\circ}$.

Proposed by Iman Maghsoudi
5 There are some segments on the plane such that no two of them intersect each other (even at the ending points). We say segment $A B$ breaks segment $C D$ if the extension of $A B$ cuts $C D$ at some point between C and D.

a) Is it possible that each segment when extended from both ends, breaks exactly one other segment from each way?

b) A segment is called surrounded if from both sides of it, there is exactly one segment that breaks it.
(e.g. segment $A B$ in the figure.) Is it possible to have all segments to be surrounded?

Proposed by Morteza Saghafian

- Intermediate

1 There are three rectangles in the following figure. The lengths of some segments are shown. Find the length of the segment $X Y$.
https://2.bp.blogspot.com/-x7GQfMFHzAQ/W6K57utTEkI/AAAAAAAAJFQ/1-5WhhuerMEJwDnWB09sTemNL OOQCK4BGAYYCw/s320/igo\%2B2018\%2Bintermediate\%2Bp1.png
Proposed by Hirad Aalipanah
2 In convex quadrilateral $A B C D$, the diagonals $A C$ and $B D$ meet at the point P. We know that $\angle D A C=90^{\circ}$ and $2 \angle A D B=\angle A C B$. If we have $\angle D B C+2 \angle A D C=180^{\circ}$ prove that $2 A P=$ $B P$.

Proposed by Iman Maghsoudi
3 Let ω_{1}, ω_{2} be two circles with centers O_{1} and O_{2}, respectively. These two circles intersect each other at points A and B. Line $O_{1} B$ intersects ω_{2} for the second time at point C, and line $O_{2} A$ intersects ω_{1} for the second time at point D. Let X be the second intersection of $A C$ and ω_{1}. Also Y is the second intersection point of $B D$ and ω_{2}. Prove that $C X=D Y$.
Proposed by Alireza Dadgarnia
4 We have a polyhedron all faces of which are triangle. Let P be an arbitrary point on one of the edges of this polyhedron such that P is not the midpoint or endpoint of this edge. Assume that $P_{0}=P$. In each step, connect P_{i} to the centroid of one of the faces containing it. This line meets
the perimeter of this face again at point P_{i+1}. Continue this process with P_{i+1} and the other face containing P_{i+1}. Prove that by continuing this process, we cannot pass through all the faces. (The centroid of a triangle is the point of intersection of its medians.)

Proposed by Mahdi Etesamifard - Morteza Saghafian
5 Suppose that $A B C D$ is a parallelogram such that $\angle D A C=90^{\circ}$. Let H be the foot of perpendicular from A to $D C$, also let P be a point along the line $A C$ such that the line $P D$ is tangent to the circumcircle of the triangle $A B D$. Prove that $\angle P B A=\angle D B H$.

Proposed by Iman Maghsoudi

- Advanced

1 Two circles ω_{1}, ω_{2} intersect each other at points A, B. Let $P Q$ be a common tangent line of these two circles with $P \in \omega_{1}$ and $Q \in \omega_{2}$. An arbitrary point X lies on ω_{1}. Line $A X$ intersects ω_{2} for the second time at Y. Point $Y^{\prime} \neq Y$ lies on ω_{2} such that $Q Y=Q Y^{\prime}$. Line $Y^{\prime} B$ intersects ω_{1} for the second time at X^{\prime}. Prove that $P X=P X^{\prime}$.

Proposed by Morteza Saghafian
2 In acute triangle $A B C, \angle A=45^{\circ}$. Points O, H are the circumcenter and the orthocenter of $A B C$, respectively. D is the foot of altitude from B. Point X is the midpoint of arc $A H$ of the circumcircle of triangle $A D H$ that contains D. Prove that $D X=D O$.
Proposed by Fatemeh Sajadi
$3 \quad$ Find all possible values of integer $n>3$ such that there is a convex n-gon in which, each diagonal is the perpendicular bisector of at least one other diagonal.
Proposed by Mahdi Etesamifard
4 Quadrilateral $A B C D$ is circumscribed around a circle. Diagonals $A C, B D$ are not perpendicular to each other. The angle bisectors of angles between these diagonals, intersect the segments $A B, B C, C D$ and $D A$ at points K, L, M and N. Given that $K L M N$ is cyclic, prove that so is $A B C D$.

Proposed by Nikolai Beluhov (Bulgaria)
$5 \quad A B C D$ is a cyclic quadrilateral. A circle passing through A, B is tangent to segment $C D$ at point E. Another circle passing through C, D is tangent to $A B$ at point F. Point G is the intersection point of $A E, D F$, and point H is the intersection point of $B E, C F$. Prove that the incenters of triangles $A G F, B H F, C H E, D G E$ lie on a circle.
Proposed by Le Viet An (Vietnam)

