AoPS Community

2001 Bosnia and Herzegovina Team Selection Test

Bosnia and Herzegovina Team Selection Test 2001

www.artofproblemsolving.com/community/c732676
by gobathegreat

- Day 1

1 On circle there are points A, B and C such that they divide circle in ratio $3: 5: 7$. Find angles of triangle $A B C$

2 For positive integers x, y and z holds $\frac{1}{x^{2}}+\frac{1}{y^{2}}=\frac{1}{z^{2}}$.
Prove that $x y z \geq 3600$
3 Find maximal value of positive integer n such that there exists subset of $S=\{1,2, \ldots, 2001\}$ with n elements, such that equation $y=2 x$ does not have solutions in set $S \times S$

- Day 2

4 In plane there are two circles with radiuses r_{1} and r_{2}, one outside the other. There are two external common tangents on those circles and one internal common tangent. The internal one intersects external ones in points A and B and touches one of the circles in point C. Prove that $A C \cdot B C=r_{1} \cdot r_{2}$

5 Let n be a positive integer, $n \geq 1$ and $x_{1}, x_{2}, \ldots, x_{n}$ positive real numbers such that $x_{1}+x_{2}+$ $\ldots+x_{n}=1$. Does the following inequality hold

$$
\sum_{i=1}^{n} \frac{x_{i}}{1-x_{1} \cdot \ldots \cdot x_{i-1} \cdot x_{i+1} \cdot \ldots x_{n}} \leq \frac{1}{1-\left(\frac{1}{n}\right)^{n-1}}
$$

6 Prove that there exists infinitely many positive integers n such that equation $(x+y+z)^{3}=$ $n^{2} x y z$ has solution (x, y, z) in set \mathbb{N}^{3}

