AoPS Community

1997 Bosnia and Herzegovina Team Selection Test

Bosnia and Herzegovina Team Selection Test 1997

www.artofproblemsolving.com/community/c732991
by gobathegreat

- Day 1

1 Solve system of equation

$$
\begin{gathered}
8\left(x^{3}+y^{3}+z^{3}\right)=73 \\
2\left(x^{2}+y^{2}+z^{2}\right)=3(x y+y z+z x) \\
x y z=1
\end{gathered}
$$

in set \mathbb{R}^{3}
2 In isosceles triangle $A B C$ with base side $A B$, on side $B C$ it is given point M. Let O be a circumcenter and S incenter of triangle $A B C$. Prove that

$$
S M \| A C \Leftrightarrow O M \perp B S
$$

3 It is given function $f: A \rightarrow \mathbb{R},(A \subseteq \mathbb{R})$ such that

$$
f(x+y)=f(x) \cdot f(y)-f(x y)+1 ;(\forall x, y \in A)
$$

If $f: A \rightarrow \mathbb{R},(\mathbb{N} \subseteq A \subseteq \mathbb{R})$ is solution of given functional equation, prove that:

$$
f(n)=\left\{\begin{array}{l}
\frac{c^{n+1}-1}{c-1}, \forall n \in \mathbb{N}, c \neq 1 \\
n+1, \forall n \in \mathbb{N}, c=1
\end{array}\right.
$$

where $c=f(1)-1 a)$ Solve given functional equation for $A=\mathbb{N} b$) With $A=\mathbb{Q}$, find all functions f which are solutions of the given functional equation and also $f(1997) \neq f(1998)$

- Day 2
$4 a)$ In triangle $A B C$ let A_{1}, B_{1} and C_{1} be touching points of incircle $A B C$ with $B A, C A$ and $A B$, respectively. Let l_{1}, l_{2} and l_{3} be lenghts of arcs $B_{1} C_{1}, A_{1} C_{1}, B_{1} A_{1}$ of incircle $A B C$, respectively, which does not contain points A_{1}, B_{1} and C_{1}, respectively.
Does the following inequality hold:

$$
\frac{a}{l_{1}}+\frac{b}{l_{2}}+\frac{c}{l_{3}} \geq \frac{9 \sqrt{3}}{\pi}
$$

b) Tetrahedron $A B C D$ has three pairs of equal opposing sides. Find length of height of tetrahedron in function od lengths of sides

5 a) Prove that for all positive integers n exists a set M_{n} of positive integers with exactly n elements and:
i) Arithmetic mean of arbitrary non-empty subset of M_{n} is integer $i i$) Geometric mean of arbitrary non-empty subset of M_{n} is integer $i i i$) Both arithmetic mean and geometry mean of arbitrary non-empty subset of M_{n} is integer
b) Does there exist infinite set M of positive integers such that arithmetic mean of arbitrary non-empty subset of M is integer

6 Let k, m and n be integers such that $1<n \leq m-1 \leq k$. Find maximum size of subset S of set $\{1,2, \ldots, k\}$ such that sum of any n different elements from S is not: a) equal to m, b) exceeding m

