

AoPS Community

1997 Bosnia and Herzegovina Team Selection Test

Bosnia and Herzegovina Team Selection Test 1997

www.artofproblemsolving.com/community/c732991 by gobathegreat

- Day 1

1 Solve system of equation

$$8(x^{3} + y^{3} + z^{3}) = 73$$
$$2(x^{2} + y^{2} + z^{2}) = 3(xy + yz + zx)$$
$$xyz = 1$$

in set \mathbb{R}^3

2 In isosceles triangle *ABC* with base side *AB*, on side *BC* it is given point *M*. Let *O* be a circumcenter and *S* incenter of triangle *ABC*. Prove that

$$SM \mid\mid AC \Leftrightarrow OM \perp BS$$

3 It is given function $f : A \to \mathbb{R}$, $(A \subseteq \mathbb{R})$ such that

 $f(x+y) = f(x) \cdot f(y) - f(xy) + 1; (\forall x, y \in A)$

If $f : A \to \mathbb{R}$, $(\mathbb{N} \subseteq A \subseteq \mathbb{R})$ is solution of given functional equation, prove that:

$$f(n) = \begin{cases} \frac{c^{n+1}-1}{c-1}, \forall n \in \mathbb{N}, c \neq 1\\ n+1, \forall n \in \mathbb{N}, c = 1 \end{cases}$$

where c = f(1)-1 a) Solve given functional equation for $A = \mathbb{N} b$) With $A = \mathbb{Q}$, find all functions f which are solutions of the given functional equation and also $f(1997) \neq f(1998)$

– Day 2

4 a) In triangle ABC let A_1 , B_1 and C_1 be touching points of incircle ABC with BA, CA and AB, respectively. Let l_1 , l_2 and l_3 be lenghts of arcs B_1C_1 , A_1C_1 , B_1A_1 of incircle ABC, respectively, which does not contain points A_1 , B_1 and C_1 , respectively. Does the following inequality hold:

$$\frac{a}{l_1}+\frac{b}{l_2}+\frac{c}{l_3}\geq \frac{9\sqrt{3}}{\pi}$$

b) Tetrahedron ABCD has three pairs of equal opposing sides. Find length of height of tetrahedron in function od lengths of sides

AoPS Community

1997 Bosnia and Herzegovina Team Selection Test

5 a) Prove that for all positive integers n exists a set M_n of positive integers with exactly n elements and:

i) Arithmetic mean of arbitrary non-empty subset of M_n is integer *ii*) Geometric mean of arbitrary non-empty subset of M_n is integer *iii*) Both arithmetic mean and geometry mean of arbitrary non-empty subset of M_n is integer

b) Does there exist infinite set M of positive integers such that arithmetic mean of arbitrary non-empty subset of M is integer

6 Let k, m and n be integers such that $1 < n \le m - 1 \le k$. Find maximum size of subset S of set $\{1, 2, ..., k\}$ such that sum of any n different elements from S is not: a) equal to m, b) exceeding m

Art of Problem Solving is an ACS WASC Accredited School.