Art of Problem Solving

AoPS Community

1998 Bosnia and Herzegovina Team Selection Test

Bosnia and Herzegovina Team Selection Test 1998

www.artofproblemsolving.com/community/c733380
by gobathegreat

- Day 1

1 Let $P_{1}, P_{2}, P_{3}, P_{4}$ and P_{5} be five different points which are inside D or on the border of figure D. Let $M=\min \left\{P_{i} P_{j} \mid i \neq j\right\}$ be minimal distance between different points P_{i}. For which configuration of points P_{i}, value M is at maximum, if : a) D is unit square b) D is equilateral triangle with side equal $1 c$) D is unit circle, circle with radius 1

2 For positive real numbers x, y and z holds $x^{2}+y^{2}+z^{2}=1$. Prove that

$$
\frac{x}{1+x^{2}}+\frac{y}{1+y^{2}}+\frac{z}{1+z^{2}} \leq \frac{3 \sqrt{3}}{4}
$$

3 Angle bisectors of angles by vertices A, B and C in triangle $A B C$ intersect opposing sides in points A_{1}, B_{1} and C_{1}, respectively. Let M be an arbitrary point on one of the lines $A_{1} B_{1}, B_{1} C_{1}$ and $C_{1} A_{1}$. Let M_{1}, M_{2} and M_{3} be orthogonal projections of point M on lines $B C, C A$ and $A B$, respectively. Prove that one of the lines $M M_{1}, M M_{2}$ and $M M_{3}$ is equal to sum of other two

- Day 2

$4 \quad$ Circle k with radius r touches the line p in point A. Let $A B$ be a dimeter of circle and C an arbitrary point of circle distinct from points A and B. Let D be a foot of perpendicular from point C to line $A B$. Let E be a point on extension of line $C D$, over point D, such that $E D=B C$. Let tangents on circle from point E intersect line p in points K and N. Prove that length of $K N$ does not depend from C

5 Let a, b and c be integers such that

$$
\begin{gathered}
b c+a d=1 \\
a c+2 b d=1
\end{gathered}
$$

Prove that $a^{2}+c^{2}=2 b^{2}+2 d^{2}$
6 Sequence of integers $\left\{u_{n}\right\}_{n \in \mathbb{N}_{0}}$ is given as: $u_{0}=0, u_{2 n}=u_{n}, u_{2 n+1}=1-u_{n}$ for all $\left.n \in \mathbb{N}_{0} a\right)$ Find $u_{1998} b$) If p is a positive integer and $m=\left(2^{p}-1\right)^{2}$, find u_{m}

