AoPS Community

Bosnia and Herzegovina Team Selection Test 1999

www.artofproblemsolving.com/community/c733393
by gobathegreat

- Day 1

1 Let a, b and c be lengths of sides of triangle $A B C$. Prove that at least one of the equations

$$
\begin{aligned}
& x^{2}-2 b x+2 a c=0 \\
& x^{2}-2 c x+2 a b=0 \\
& x^{2}-2 a x+2 b c=0
\end{aligned}
$$

does not have real solutions
2 Prove the inequality

$$
\frac{a^{2}}{b+c-a}+\frac{b^{2}}{a+c-b}+\frac{c^{2}}{a+b-c} \geq 3 \sqrt{3} R
$$

in triangle $A B C$ where a, b and c are sides of triangle and R radius of circumcircle of $A B C$
3 Let $f:[0,1] \rightarrow \mathbb{R}$ be injective function such that $f(0)+f(1)=1$. Prove that exists $x_{1}, x_{2} \in[0,1]$, $x_{1} \neq x_{2}$ such that $2 f\left(x_{1}\right)<f\left(x_{2}\right)+\frac{1}{2}$. After that state at least one generalization of this result

- Day 2

4 Let angle bisectors of angles $\angle B A C$ and $\angle A B C$ of triangle $A B C$ intersect sides $B C$ and $A C$ in points D and E, respectively. Let points F and G be foots of perpendiculars from point C on lines $A D$ and $B E$, respectively. Prove that $F G \| A B$
$5 \quad$ For any nonempty set S, we define $\sigma(S)$ and $\pi(S)$ as sum and product of all elements from set S, respectively. Prove that $\left.a) \sum \frac{1}{\pi(S)}=n b\right) \sum \frac{\sigma(S)}{\pi(S)}=\left(n^{2}+2 n\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}\right)(n+1)$ where \sum denotes sum by all nonempty subsets S of set $\{1,2, \ldots, n\}$

6 It is given polynomial

$$
P(x)=x^{4}+3 x^{3}+3 x+p,(p \in \mathbb{R})
$$

a) Find p such that there exists polynomial with imaginary root x_{1} such that $\left|x_{1}\right|=1$ and $2 \operatorname{Re}\left(x_{1}\right)=\frac{1}{2}(\sqrt{17}-3) b$) Find all other roots of polynomial $P c$) Prove that does not exist positive integer n such that $x_{1}^{n}=1$

