Art of Problem Solving

AoPS Community

2016 Bosnia And Herzegovina - Regional Olympiad

Regional Olympiad - Federation of Bosnia and Herzegovina 2016

www.artofproblemsolving.com/community/c734667
by gobathegreat

- \quad Sarajevo, April 23rd
- \quad Grade 9

1 Find minimal value of $A=\frac{\left(x+\frac{1}{x}\right)^{6}-\left(x^{6}+\frac{1}{x^{6}}\right)-2}{\left(x+\frac{1}{x}\right)^{3}+\left(x^{3}+\frac{1}{x^{3}}\right)}$
2 Let $A B C$ be an isosceles triangle such that $\angle B A C=100^{\circ}$. Let D be an intersection point of angle bisector of $\angle A B C$ and side $A C$, prove that $A D+D B=B C$

3 Nine lines are given such that every one of them intersects given square $A B C D$ on two trapezoids, which area ratio is $2: 3$. Prove that at least 3 of those 9 lines pass through the same point
$4 \quad$ Let a and b be distinct positive integers, bigger that 10^{6}, such that $(a+b)^{3}$ is divisible with $a b$. Prove that $|a-b|>10^{4}$

- \quad Grade 10

1 If $\left|a x^{2}+b x+c\right| \leq 1$ for all $x \in[-1,1]$ prove that: $\left.\left.\left.a\right)|c| \leq 1 b\right)|a+c| \leq 1 c\right) a^{2}+b^{2}+c^{2} \leq 5$
2 Let a and b be two positive integers such that $2 a b$ divides $a^{2}+b^{2}-a$. Prove that a is perfect square

3 Let $A B$ be a diameter of semicircle h. On this semicircle there is point C, distinct from points A and B. Foot of perpendicular from point C to side $A B$ is point D. Circle k is outside the triangle $A D C$ and at the same time touches semicircle h and sides $A B$ and $C D$. Touching point of k with side $A B$ is point E, with semicircle h is point T and with side $C D$ is point S a) Prove that points A, S and T are collinear b) Prove that $A C=A E$

4 Let A be a set of 65 integers with pairwise different remainders modulo 2016. Prove that exists a subset $B=\{a, b, c, d\}$ of set A such that $a+b-c-d$ is divisible with 2016

- \quad Grade 11

AoPS Community

1 Let a and b be real numbers bigger than 1 . Find maximal value of $c \in \mathbb{R}$ such that

$$
\frac{1}{3+\log _{a} b}+\frac{1}{3+\log _{b} a} \geq c
$$

2 Does there exist a right angled triangle, which hypotenuse is 2016^{2017} and two other sides positive integers.
$3 \quad h_{a}, h_{b}$ and h_{c} are altitudes, t_{a}, t_{b} and t_{c} are medians of acute triangle, r radius of incircle, and R radius of circumcircle of acute triangle $A B C$. Prove that

$$
\frac{t_{a}}{h_{a}}+\frac{t_{b}}{h_{b}}+\frac{t_{c}}{h_{c}} \leq 1+\frac{R}{r}
$$

4 It is given circle with center in center of coordinate center with radius of 2016. On circle and inside it are 540 points with integer coordinates such that no three of them are collinear. Prove that there exist two triangles with vertices in given points such that they have same area

- \quad Grade 12
$1 \quad$ Let $a_{1}=1$ and $a_{n+1}=a_{n}+\frac{1}{2 a_{n}}$ for $n \geq 1$. Prove that $\left.\left.a\right) n \leq a_{n}^{2}<n+\sqrt[3]{n} b\right) \lim _{n \rightarrow \infty}\left(a_{n}-\sqrt{n}\right)=0$

2 Find all elements $n \in A=\{2,3, \ldots, 2016\} \subset \mathbb{N}$ such that: every number $m \in A$ smaller than n, and coprime with n, must be a prime number

3 Circle of radius R_{1} is inscribed in an acute angle α. Second circle with radius R_{2} touches one of the sides forming the angle α in same point as first circle and intersects the second side in points A and B, such that centers of both circles lie inside angle α. Prove that

$$
A B=4 \cos \frac{\alpha}{2} \sqrt{\left(R_{2}-R_{1}\right)\left(R_{1} \cos ^{2} \frac{\alpha}{2}+R_{2} \sin ^{2} \frac{\alpha}{2}\right)}
$$

4 Find all functions $f: \mathbb{Q} \rightarrow \mathbb{R}$ such that: a) $f(1)+2>0$ b) $f(x+y)-x f(y)-y f(x)=$ $f(x) f(y)+f(x)+f(y)+x y, \forall x, y \in \mathbb{Q} c) f(x)=3 f(x+1)+2 x+5, \forall x \in \mathbb{Q}$

