AoPS Community

2014 Bosnia And Herzegovina - Regional Olympiad

Regional Olympiad - Federation of Bosnia and Herzegovina 2014

www.artofproblemsolving.com/community/c735466
by gobathegreat, pbornsztein

- Sarajevo, April 26th
- \quad Grade 9

1 Find all possible values of

$$
\frac{(a+b-c)^{2}}{(a-c)(b-c)}+\frac{(b+c-a)^{2}}{(b-a)(c-a)}+\frac{(c+a-b)^{2}}{(c-b)(a-b)}
$$

2 Solve the equation, where x and y are positive integers:

$$
x^{3}-y^{3}=999
$$

$3 \quad$ In triangle $A B C(b \geq c)$, point E is the midpoint of shorter arc $B C$. If D is the point such that $E D$ is the diameter of circumcircle $A B C$, prove that $\angle D E A=\frac{1}{2}(\beta-\gamma)$

4 Determine the set S with minimal number of points defining 7 distinct lines

- \quad Grade 10

1 Solve the equation:

$$
\frac{x y}{z}+\frac{y z}{x}+\frac{z x}{y}=3
$$

where x, y and z are integers
2 Let a, b and c be positive real numbers such that $a b+b c+c a=1$. Prove the inequality:

$$
\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \geq 3(a+b+c)
$$

$3 \quad$ Let $A B C D$ be a parallelogram. Let M be a point on the side $A B$ and N be a point on the side $B C$ such that the segments $A M$ and $C N$ have equal lengths and are non-zero. The lines $A N$ and $C M$ meet at Q.
Prove that the line $D Q$ is the bisector of the angle $\measuredangle A D C$.

Alternative formulation. Let $A B C D$ be a parallelogram. Let M and N be points on the sides $A B$ and $B C$, respectively, such that $A M=C N \neq 0$. The lines $A N$ and $C M$ intersect at a point Q.
Prove that the point Q lies on the bisector of the angle $\measuredangle A D C$.
4 How namy subsets with 3 elements of set $S=\{1,2,3, \ldots, 19,20\}$ exist, such that their product is divisible by 4 .

- \quad Grade 11

1 Solve logarithmical equation $x^{\log _{3} x-1}+2(x-1)^{\log _{3} x}=3 x^{2}$
2 Solve the equation

$$
x^{2}+y^{2}+z^{2}=686
$$

where x, y and z are positive integers
3 Excircle of triangle $A B C$ to side $A B$ of triangle $A B C$ touches side $A B$ in point D. Determine ratio $A D: B D$ if $\angle C A B=2 \angle A D C$

4 At the beginning of school year in one of the first grade classes: i) every student had exatly 20 acquaintances $i i$) every two students knowing each other had exactly 13 mutual acquaintances $i i i$) every two students not knowing each other had exactly 12 mutual acquaintances Find number of students in this class

- \quad Grade 12

1 Find all real solutions of the equation:

$$
\begin{aligned}
& x=\frac{2 z^{2}}{1+z^{2}} \\
& y=\frac{2 x^{2}}{1+x^{2}} \\
& z=\frac{2 y^{2}}{1+y^{2}}
\end{aligned}
$$

2 Problem 3 for grade 11
3 Find all integers n such that $n^{4}-8 n+15$ is product of two consecutive integers
$4 \quad$ Problem 4 for grade 11

