Art of Problem Solving

## AoPS Community

## 2013 Bosnia And Herzegovina - Regional Olympiad

## Regional Olympiad - Federation of Bosnia and Herzegovina 2013

www.artofproblemsolving.com/community/c736203
by gobathegreat

- $\quad$ Sarajevo, April 28th
- $\quad$ Grade 9

1 If $x$ and $y$ are real numbers such that $x^{2013}+y^{2013}>x^{2012}+y^{2012}$, prove that $x^{2014}+y^{2014}>$ $x^{2013}+y^{2013}$

2 In triangle $A B C, \angle A C B=50^{\circ}$ and $\angle C B A=70^{\circ}$. Let $D$ be a foot of perpendicular from point $A$ to side $B C, O$ circumcenter of $A B C$ and $E$ antipode of $A$ in circumcircle $A B C$. Find $\angle D A E$

3 Find maximal positive integer $p$ such that $5^{7}$ is sum of $p$ consecutive positive integers
$4 \quad$ a) Is it possible, on modified chessboard $20 \times 30$, to draw a line which cuts exactly 50 cells where chessboard cells are squares $1 \times 1 b$ ) What is the maximum number of cells which line can cut on chessboard $m \times n, m, n \in \mathbb{N}$

- $\quad$ Grade 10

1 If $x$ and $y$ are nonnegative real numbers such that $x+y=1$, determine minimal and maximal value of

$$
A=x \sqrt{1+y}+y \sqrt{1+x}
$$

2 In circle with radius 10 , point $M$ is on chord $P Q$ such that $P M=5$ and $M Q=10$. Through point $M$ we draw chords $A B$ and $C D$, and points $X$ and $Y$ are intersection points of chords $A D$ and $B C$ with chord $P Q$ (see picture), respectively. If $X M=3$ find $M Y$
https://services.artofproblemsolving.com/download.php?id=YXROYWNobWVudHMvYy9kLzBiMmFmM2V
$=\backslash \& r n=Z 2 V v b W V 0 c m l q Y S 5 w b m c=$
3 Find all integers $a$ such that $\sqrt{\frac{9 a+4}{a-6}}$ is rational number

## $4 \quad$ Problem 4 for grade 9

## - $\quad$ Grade 11

1 Let $a$ and $b$ be real numbers from interval $\left[0, \frac{\pi}{2}\right]$. Prove that

$$
\sin ^{6} a+3 \sin ^{2} a \cos ^{2} b+\cos ^{6} b=1
$$

if and only if $a=b$
2 Find all integers $a, b, c$ and $d$ such that

$$
a^{2}+5 b^{2}-2 c^{2}-2 c d-3 d^{2}=0
$$

3 Convex quadrilateral is divided by diagonals into four triangles with congruent inscribed circles. Prove that this quadrilateral is rhombus.

4 If $A=\{1,2, \ldots, 4 s-1,4 s\}$ and $S \subseteq A$ such that $|S|=2 s+2$, prove that in $S$ we can find three distinct numbers $x, y$ and $z$ such that $x+y=2 z$

- $\quad$ Grade 12

1 If $a, b$ and $c$ are nonnegative real numbers such that $a^{2}+b^{2}+c^{2}=1$, prove that

$$
\frac{1}{2} \leq \frac{a}{1+a^{4}}+\frac{b}{1+b^{4}}+\frac{c}{1+c^{4}} \leq \frac{9 \sqrt{3}}{10}
$$

2 If $x$ and $y$ are real numbers, prove that $\frac{4 x^{2}+1}{y^{2}+2}$ is not integer

## $3 \quad$ Problem 3 for grade 11

$4 \quad$ Problem 4 for grade 11

