AoPS Community

2010 Bosnia And Herzegovina - Regional Olympiad

Regional Olympiad - Federation of Bosnia and Herzegovina 2010

www.artofproblemsolving.com/community/c738806
by gobathegreat

- \quad Sarajevo, April 24th
- \quad Grade 9

1 For real numbers a, b, c and d holds:

$$
\begin{gathered}
a+b+c+d=0 \\
a^{3}+b^{3}+c^{3}+d^{3}=0
\end{gathered}
$$

Prove that sum of some two numbers a, b, c and d is equal to zero
2 In convex quadrilateral $A B C D$, diagonals $A C$ and $B D$ intersect at point O at angle 90°. Let K, L, M and N be orthogonal projections of point O to sides $A B, B C, C D$ and $D A$ of quadrilateral $A B C D$. Prove that $K L M N$ is cyclic

3 If a and b are positive integers such that $a b \mid a^{2}+b^{2}$ prove that $a=b$
4 In table of dimensions $2 n \times 2 n$ there are positive integers not greater than 10 , such that numbers lying in unit squares with common vertex are coprime. Prove that there exist at least one number which occurs in table at least $\frac{2 n^{2}}{3}$ times

- \quad Grade 10

1 Find all real numbers (x, y) satisfying the following:

$$
\begin{aligned}
& x+\frac{3 x-y}{x^{2}+y^{2}}=3 \\
& y-\frac{x+3 y}{x^{2}+y^{2}}=0
\end{aligned}
$$

2 It is given acute triangle $A B C$ with orthocenter at point H. Prove that

$$
A H \cdot h_{a}+B H \cdot h_{b}+C H \cdot h_{c}=\frac{a^{2}+b^{2}+c^{2}}{2}
$$

where a, b and c are sides of a triangle, and h_{a}, h_{b} and h_{c} altitudes of $A B C$

3 Problem 3 for grade 9

4 It is given set with n^{2} elements ($n \geq 2$) and family \mathbb{F} of subsets of set A, such that every one of them has n elements. Assume that every two sets from \mathbb{F} have at most one common element. Prove that i) Family \mathbb{F} has at most $n^{2}+n$ elements $i i$) Upper bound can be reached for $n=3$

- \quad Grade 11

1 Prove the inequality

$$
\frac{y^{2}-x^{2}}{2 x^{2}+1}+\frac{z^{2}-y^{2}}{2 y^{2}+1}+\frac{x^{2}-z^{2}}{2 z^{2}+1} \geq 0
$$

where x, y and z are real numbers
2 Angle bisector from vertex A of acute triangle $A B C$ intersects side $B C$ in point D, and circumcircle of $A B C$ in point E (different from A). Let F and G be foots of perpendiculars from point D to sides $A B$ and $A C$. Prove that area of quadrilateral $A E F G$ is equal to the area of triangle $A B C$

3 Let n be an odd positive integer bigger than 1 . Prove that $3^{n}+1$ is not divisible with n
4 In plane there are n noncollinear points $A_{1}, A_{2}, \ldots, A_{n}$. Prove that there exist a line which passes through exactly two of these points

- \quad Grade 12

1 It is given positive real number a such that:

$$
\begin{gathered}
\left\{\frac{1}{a}\right\}=\left\{a^{2}\right\} \\
2<a^{2}<3
\end{gathered}
$$

Find the value of

$$
a^{12}-\frac{144}{a}
$$

2 Problem 3 for grade 11

3 Problem 4 for grade 11

4 Let $A A_{1}, B B_{1}$ and $C C_{1}$ be altitudes of triangle $A B C$ and let $A_{1} A_{2}, B_{1} B_{2}$ and $C_{1} C_{2}$ be diameters of Euler circle of triangle $A B C$. Prove that lines $A A_{2}, B B_{2}$ and $C C_{2}$ are concurrent

