

1978 Romania Team Selection Test

Romania Team Selection Test 1978

www.artofproblemsolving.com/community/c739891 by CatalinBordea

-	Day 1
1	Prove that for every partition of $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ into two subsets, one of the subsets contains three numbers such that the sum of two of them is equal to the double of the third.
2	Suppose that k, l are natural numbers such that $gcd(11m - 1, k) = gcd(11m - 1, l)$, for any natural number m . Prove that there exists an integer n such that $k = 11^n l$.
3	Let $P[X,Y]$ be a polynomial of degree at most 2. If A, B, C, A', B', C' are distinct roots of P such that A, B, C are not collinear and A', B', C' lie on the lines BC, CA , respectively, AB , in the planar representation of these points, show that $P = 0$.
4	Diagonals AC and BD of a convex quadrilateral $ABCD$ intersect a point O . Prove that if triangles OAB, OBC, OCD and ODA have the same perimeter, then $ABCD$ is a rhombus. What happens if O is some other point inside the quadrilateral?
5	Prove that there is no square with its four vertices on four concentric circles whose radii form an arithmetic progression.
6	Show that there is no polyhedron whose projection on the plane is a nondegenerate triangle.
7	Let P, Q, R be polynomials of degree 3 with real coefficients such that $P(x) \le Q(x) \le R(x)$, for every real x . Suppose $P - R$ admits a root. Show that $Q = kP + (1 - k)R$, for some real number $k \in [0, 1]$. What happens if P, Q, R are of degree 4, under the same circumstances?
8	For any set A we say that two functions $f, g : A \longrightarrow A$ are <i>similar</i> , if there exists a bijection $h : A \longrightarrow A$ such that $f \circ h = h \circ g$.
	a) If <i>A</i> has three elements, construct a finite, arbitrary number functions, having as domain and codomain <i>A</i> , that are two by two similar, and every other function with the same domain and codomain as the ones determined is similar to, at least, one of them. b) For $A = \mathbb{R}$, show that the functions $\sin \operatorname{and} - \sin \operatorname{are} \operatorname{similar}$.
9	A sequence $(x_n)_{n\geq 0}$ of real numbers satisfies $x_0 > 1 = x_{n+1} (x_n - \lfloor x_n \rfloor)$, for each $n \geq 1$. Prove that if $(x_n)_{n\geq 0}$ is periodic, then x_0 is a root of a quadratic equation. Study the converse.

-	Day 2
1	Associate to any point (h, k) in the integer net of the cartesian plane a real number $a_{h,k}$ so that
	$a_{h,k} = \frac{1}{4} \left(a_{h-1,k} + a_{h+1,k} + a_{h,k-1} + a_{h,k+1} \right), \forall h, k \in \mathbb{Z}.$
	a) Prove that its possible that all the elements of the set $A := \{a_{h,k} h, k \in \mathbb{Z}\}$ are different. b) If so, show that the set A hasnt any kind of boundary.
2	Prove that there is a function $F : \mathbb{N} \longrightarrow \mathbb{N}$ satisfying $(F \circ F)(n) = n^2$, for all $n \in \mathbb{N}$.
3	Let $A_1, A_2,, A_{3n}$ be $3n \ge 3$ planar points such that $A_1A_2A_3$ is an equilateral triangle and $A_{3k+1}, A_{3k+2}, A_{3k+3}$ are the midpoints of the sides of $A_{3k-2}A_{3k-1}A_{3k}$, for all $1 \le k < n$. Of two different colors, each one of these points are colored, either with one, either with another.
	a) Prove that, if $n \ge 7$, then some of these points form a monochromatic (only one color) isosceles trapezoid. b) What about $n = 6$?
4	Let \mathcal{M} a set of $3n \ge 3$ planar points such that the maximum distance between two of these points is 1. Prove that:
	a) among any four points, there are two aparted by a distance at most $\frac{1}{\sqrt{2}}$. b) for $n = 2$ and any $\epsilon > 0$, it is possible that 12 or 15 of the distances between points from \mathcal{M} lie in the interval $(1 - \epsilon, 1]$; but any 13 of the distances cant be found all in the interval $(\frac{1}{2}, 1]$.
	c) there exists a circle of diameter $\sqrt{6}$ that contains \mathcal{M} . d) some two points of \mathcal{M} are on a distance not exceeding $\frac{4}{3\sqrt{n}-\sqrt{3}}$.
_	Day 3
1	In a convex quadrilateral $ABCD$, let A, B be the orthogonal projections to CD of A , respectively, B .
	a) Assuming that $BB \le AA$ and that the perimeter of $ABCD$ is $(AB + CD) \cdot BB$, is $ABCD$ necessarily a trapezoid? b) The same question with the addition that $\angle BAD$ is obtuse.
2	Points A, B, C are arbitrarily taken on edges SA, SB , respectively, SC of a tetrahedron $SABC$. Plane forrmed by ABC intersects the plane ρ , formed by ABC , in a line d . Prove that, mean- while the plane ρ rotates around d , the lines AA, BB and CC are, and remain concurrent. Find de locus of the respective intersections.

1978 Romania Team Selection Test

3 a) Let D_1, D_2, D_3 be pairwise skew lines. Through every point $P_2 \in D_2$ there is an unique common secant of these three lines that intersect D_1 at P_1 and D_3 at P_3 . Let coordinate systems be introduced on D_2 and D_3 having as origin O_2 , respectively, O_3 . Find a relation between the coordinates of P_2 and P_3 .

b) Show that there exist four pairwise skew lines with exactly two common secants. Also find examples with exactly one and with no common secants.

c) Let F_1, F_2, F_3, F_4 be any four secants of D_1, D_2, D_3 . Prove that F_1, F_2, F_3, F_4 have infinitely many common secants.

4 Solve the equation $\sin x \sin 2x \cdots \sin nx + \cos x \cos 2x \cdots \cos nx = 1$, for $n \in \mathbb{N}$ and $x \in \mathbb{R}$.

5 Find locus of points *M* inside an equilateral triangle *ABC* such that

 $\angle MBC + \angle MCA + \angle MAB = \pi/2.$

6 a) Prove that $0 = \inf\{|x\sqrt{2} + y\sqrt{3} + y\sqrt{5}| | x, y, z \in \mathbb{Z}, x^2 + y^2 + z^2 > 0\}$

b) Prove that there exist three positive rational numbers a, b, c such that the expression E(x, y, z) := xa+yb+zc vanishes for infinitely many integer triples (x, y, z), but it doesn't get arbitrarily close to 0.

7 a) Prove that for any natural number $n \ge 1$, there is a set \mathcal{M} of n points from the Cartesian plane such that the barycenter of every subset of \mathcal{M} has integral coordinates (both coordinates are integer numbers).

b) Show that if a set N formed by an infinite number of points from the Cartesian plane is given such that no three of them are collinear, then there exists a finite subset of N, the barycenter of which has non-integral coordinates.

– Day 4

- 1 Show that for every natural number $a \ge 3$, there are infinitely many natural numbers n such that $a^n \equiv 1 \pmod{n}$. Does this hold for n = 2?
- **2** Let k be a natural number. A function $f : S := \{x_1, x_2, ..., x_k\} \longrightarrow \mathbb{R}$ is said to be *additive* if, whenever $n_1x_1 + n_2x_2 + \cdots + n_kx_k = 0$, it holds that $n_1f(x_1) + n_2f(x_2) + \cdots + n_kf(x_k) = 0$, for all natural numbers $n_1, n_2, ..., n_k$.

Show that for every additive function and for every finite set of real numbers T, there exists a second function, which is a real additive function defined on $S \cup T$ and which is equal to the former on the restriction S.

1978 Romania Team Selection Test

- **3** Let *p* be a natural number and let two partitions $\mathcal{A} = \{A_1, A_2, ..., A_p\}, \mathcal{B} = \{B_1, B_2, ...B_p\}$ of a finite set \mathcal{M} . Knowing that, whenever an element of \mathcal{A} doesn't have any elements in common with another of \mathcal{B} , it holds that the number of elements of these two is greater than *p*, prove that $|\mathcal{M}| \ge \frac{1}{2}(1+p^2)$. Can equality hold?
- 4 Let be some points on a plane, no three collinear. We associate a positive or a negative value to every segment formed by these. Prove that the number of points, the number of segments with negative associated value, and the number of triangles that has a negative product of the values of its sides, share the same parity.

Act of Problem Solving is an ACS WASC Accredited School.