## AoPS Community

## Romania National Olympiad 2000

www.artofproblemsolving.com/community/c742611
by CatalinBordea

- $\quad$ Grade level 9

1 Let be two natural primes $1 \leq q \leq p$. Prove that $\left(\sqrt{p^{2}+q}+p\right)^{2}$ is irrational and its fractional part surpasses $3 / 4$.

2 Let $A, B$ be two points in a plane and let two numbers $a, b \in(0,1)$. For each point $M$ that is not on the line $A B$ consider $P$ on the segment $A M$ and $N$ on $B M$ (both excluding the extremities) such that $B N=b \cdot B M$ and $A P=a \cdot A M$. Find the locus of the points $M$ for which $A N=B P$.

3 Let be a natural number $n \geq 2$ and an expression of $n$ variables

$$
E\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}-x_{1} x_{2}-x_{2} x_{3}-\cdots-x_{n-1} x_{n}-x_{n} x_{1} .
$$

Determine $\sup _{x_{1}, \ldots, x_{n} \in[0,1]} E\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and the specific values at which this supremum is attained.

4 Let $I$ be the center of the incircle of a triangle $A B C$. Shw that, if for any point $M$ on the segment $A B$ (extremities excluded) there exist two points $N, P$ on $B C$, respectively, $A C$ (both excluding the extremities) such that the center of mass of $M N P$ coincides with $I$, then $A B C$ is equilateral.

- $\quad$ Grade level 10

1 Let $\left(x_{n}\right)_{n \geq 1}$ be a sequence having $x_{1}=3$ and defined as $x_{n+1}=\left\lfloor\sqrt{2} x_{n}\right\rfloor$, for every natural number $n$. Find all values $m$ for which the terms $x_{m}, x_{m+1}, x_{m+2}$ are in arithmetic progression, where $\rfloor$ denotes the integer part.

2 Demonstrate that if $z_{1}, z_{2} \in \mathbb{C}^{*}$ satisfy the relation:

$$
z_{1} \cdot 2^{\left|z_{1}\right|}+z_{2} \cdot 2^{\left|z_{2}\right|}=\left(z_{1}+z_{2}\right) \cdot 2^{\left|z_{1}+z_{2}\right|},
$$

then $z_{1}^{6}=z_{2}^{6}$
3 Let be a tetahedron $A B C D$, and $E$ be the projection of $D$ on the plane formed by $A B C$. If $\mathcal{A}_{\mathcal{R}}$ denotes the area of the region $\mathcal{R}$, show that the following affirmations are equivalent:
a) $C=E \vee C E \| A B$
b) $M \in \overline{C D} \Longrightarrow \mathcal{A}_{A B M}^{2}=\frac{C M^{2}}{C D^{2}} \cdot \mathcal{A}_{A B D}^{2}+\left(1-\frac{C M^{2}}{C D^{2}}\right) \cdot \mathcal{A}_{A B C}^{2}$

4 Let $f$ be a polynom of degree 3 and having rational coefficients. Prove that, if there exist two distinct nonzero rational numbers $a, b$ and two roots $x, y$ of $f$ such that $a x+b y$ is rational, then all roots of $f$ are rational.

## - $\quad$ Grade level 11

1 Let $\mathcal{M}=\left\{A \in M_{2}(\mathbb{C})\left|\operatorname{det}\left(A-z I_{2}\right)=0 \Longrightarrow\right| z \mid<1\right\}$. Prove that:

$$
X, Y \in \mathcal{M} \wedge X \cdot Y=Y \cdot X \Longrightarrow X \cdot Y \in \mathcal{M}
$$

2 Study the convergence of a sequence $\left(x_{n}\right)_{n \geq 0}$ for which $x_{0} \in \mathbb{R} \backslash \mathbb{Q}$, and $x_{n+1} \in\left\{\frac{x_{n}+1}{x_{n}}, \frac{x_{n}+2}{2 x_{n}-1}\right\}$, for all $n \geq 1$.
$3 \quad$ A function $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ is olympic if, any finite number of pairwise distinct elements of $\mathbb{R}^{2}$ at which the function takes the same value represent in the plane the vertices of a convex polygon.

Prove that if $p$ if a complex polynom of degree at least 1 , then the function $\mathbb{R}^{2} \ni(x, y) \mapsto$ $|p(x+i y)|$ is olympic if and only if the roots of $p$ are all equal.
$4 \quad$ Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a function that satisfies the conditions: (i) $\quad \lim _{x \rightarrow \infty}(f \circ f)(x)=\infty=$ $-\lim _{x \rightarrow-\infty}(f \circ f)(x)$ (ii) $f$ has Darbouxs property
a) Prove that the limits of $f$ at $\pm \infty$ exist.
b) Is possible for the limits from a) to be finite?

## - $\quad$ Grade level 12

$1 \quad$ Let $a \in(1, \infty)$ and a countinuous function $f:[0, \infty) \longrightarrow \mathbb{R}$ having the property:

$$
\lim _{x \rightarrow \infty} x f(x) \in \mathbb{R}
$$

a) Show that the integral $\int_{1}^{\infty} \frac{f(x)}{x} d x$ and the limit $\lim _{t \rightarrow \infty} t \int_{1}^{a} f\left(x^{t}\right) d x$ both exist, are finite and equal.
b) Calculate $\lim _{t \rightarrow \infty} t \int_{1}^{a} \frac{d x}{1+x^{t}}$.

2 For any partition $P$ of $[0,1]$, consider the set

$$
\mathcal{A}(P)=\left\{f:[0,1] \longrightarrow \mathbb{R}|\exists f|_{[0,1]} \wedge \int_{0}^{1}|f(x)| d x=1 \wedge(y \in P \Longrightarrow f(y)=0)\right\}
$$

Prove that there exists a partition $P_{0}$ of $[0,1]$ such that

$$
g \in \mathcal{A}\left(P_{0}\right) \Longrightarrow \sup _{x \in[0,1]}|g(x)|>4 \cdot \# P .
$$

Here, $\# D$ denotes the natural number $d$ such that $0=x_{0}<x_{1}<\cdots<x_{d}=1$ is a partition $D$ of $[0,1]$.

3 We say that the abelian group $G$ has property $(P)$ if, for any commutative group $H$, any $H \leq H$ and any momorphism $\mu: H \longrightarrow G$, there exists a morphism $\mu: H \longrightarrow G$ such that $\left.\mu\right|_{H}=\mu$. Show that:
a) the group $\left(\mathbb{Q}^{*}, \cdot\right)$ hasnt property $(P)$.
b) the group $(\mathbb{Q},+)$ has property $(P)$.

4 Prove that a nontrivial finite ring is not a skew field if and only if the equation $x^{n}+y^{n}=z^{n}$ has nontrivial solutions in this ring for any natural number $n$.

