

AoPS Community

www.artofproblemsolving.com/community/c742611 by CatalinBordea

-	Grade level 9
1	Let be two natural primes $1 \le q \le p$. Prove that $\left(\sqrt{p^2 + q} + p\right)^2$ is irrational and its fractional part surpasses $3/4$.
2	Let A, B be two points in a plane and let two numbers $a, b \in (0, 1)$. For each point M that is not on the line AB consider P on the segment AM and N on BM (both excluding the extremities) such that $BN = b \cdot BM$ and $AP = a \cdot AM$. Find the locus of the points M for which $AN = BP$.
3	Let be a natural number $n \ge 2$ and an expression of n variables
	$E(x_1, x_2,, x_n) = x_1^2 + x_2^2 + \dots + x_n^2 - x_1 x_2 - x_2 x_3 - \dots - x_{n-1} x_n - x_n x_1.$
	Determine $\sup_{x_1,,x_n \in [0,1]} E(x_1, x_2,, x_n)$ and the specific values at which this supremum is attained.
4	Let <i>I</i> be the center of the incircle of a triangle <i>ABC</i> . Shw that, if for any point <i>M</i> on the segment <i>AB</i> (extremities excluded) there exist two points N, P on <i>BC</i> , respectively, <i>AC</i> (both excluding the extremities) such that the center of mass of <i>MNP</i> coincides with <i>I</i> , then <i>ABC</i> is equilateral.
-	Grade level 10
1	Let $(x_n)_{n\geq 1}$ be a sequence having $x_1 = 3$ and defined as $x_{n+1} = \lfloor \sqrt{2}x_n \rfloor$, for every natural number n . Find all values m for which the terms x_m, x_{m+1}, x_{m+2} are in arithmetic progression, where $\lfloor \rfloor$ denotes the integer part.
2	Demonstrate that if $z_1, z_2 \in \mathbb{C}^*$ satisfy the relation:
	$z_1 \cdot 2^{ z_1 } + z_2 \cdot 2^{ z_2 } = (z_1 + z_2) \cdot 2^{ z_1 + z_2 },$
	then $z_1^6=z_2^6$
3	Let be a tetahedron $ABCD$, and E be the projection of D on the plane formed by ABC . If $\mathcal{A}_{\mathcal{R}}$ denotes the area of the region \mathcal{R} , show that the following affirmations are equivalent:
	a) $C = E \lor CE \parallel AB$

b) $M \in \overline{CD} \implies \mathcal{A}_{ABM}^2 = \frac{CM^2}{CD^2} \cdot \mathcal{A}_{ABD}^2 + \left(1 - \frac{CM^2}{CD^2}\right) \cdot \mathcal{A}_{ABC}^2$

AoPS Community

2000 Romania National Olympiad

4 Let f be a polynom of degree 3 and having rational coefficients. Prove that, if there exist two distinct nonzero rational numbers a, b and two roots x, y of f such that ax + by is rational, then all roots of *f* are rational. Grade level 11 _ Let $\mathcal{M} = \{A \in M_2(\mathbb{C}) \mid \det (A - zI_2) = 0 \implies |z| < 1\}$. Prove that: 1 $X, Y \in \mathcal{M} \land X \cdot Y = Y \cdot X \implies X \cdot Y \in \mathcal{M}.$ Study the convergence of a sequence $(x_n)_{n\geq 0}$ for which $x_0 \in \mathbb{R} \setminus \mathbb{Q}$, and $x_{n+1} \in \left\{ \frac{x_n+1}{x_n}, \frac{x_n+2}{2x_n-1} \right\}$, 2 for all n > 1. A function $f : \mathbb{R}^2 \longrightarrow \mathbb{R}$ is *olympic* if, any finite number of pairwise distinct elements of \mathbb{R}^2 3 at which the function takes the same value represent in the plane the vertices of a convex polygon. Prove that if p if a complex polynom of degree at least 1, then the function $\mathbb{R}^2 \ni (x,y) \mapsto$ |p(x+iy)| is olympic if and only if the roots of p are all equal. Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be a function that satisfies the conditions: (i) $\lim_{x\to\infty} (f \circ f)(x) = \infty =$ 4 $-\lim_{x\to\infty} (f \circ f)(x)$ (ii) f has Darbouxs property **a)** Prove that the limits of f at $\pm \infty$ exist. b) Is possible for the limits from a) to be finite? Grade level 12 Let $a \in (1,\infty)$ and a countinuous function $f:[0,\infty) \longrightarrow \mathbb{R}$ having the property: 1 $\lim_{x \to \infty} x f(x) \in \mathbb{R}.$

a) Show that the integral $\int_{1}^{\infty} \frac{f(x)}{x} dx$ and the limit $\lim_{t\to\infty} t \int_{1}^{a} f(x^{t}) dx$ both exist, are finite and equal.

b) Calculate $\lim_{t\to\infty} t \int_1^a \frac{dx}{1+x^t}$.

2 For any partition *P* of [0, 1], consider the set

$$\mathcal{A}(P) = \left\{ f: [0,1] \longrightarrow \mathbb{R} \left| \exists f \right|_{[0,1]} \land \int_0^1 |f(x)| dx = 1 \land (y \in P \implies f(y) = 0) \right\}.$$

AoPS Community

2000 Romania National Olympiad

Prove that there exists a partition P_0 of [0, 1] such that

$$g \in \mathcal{A}(P_0) \implies \sup_{x \in [0,1]} |g(x)| > 4 \cdot \# P.$$

Here, #D denotes the natural number d such that $0 = x_0 < x_1 < \cdots < x_d = 1$ is a partition D of [0, 1].

3 We say that the abelian group *G* has property (*P*) if, for any commutative group *H*, any $H \le H$ and any momorphism $\mu : H \longrightarrow G$, there exists a morphism $\mu : H \longrightarrow G$ such that $\mu \Big|_{H} = \mu$. Show that:

a) the group (\mathbb{Q}^*, \cdot) hasnt property (*P*). **b)** the group $(\mathbb{Q}, +)$ has property (*P*).

4 Prove that a nontrivial finite ring is not a skew field if and only if the equation $x^n + y^n = z^n$ has nontrivial solutions in this ring for any natural number n.

3