AoPS Community

USA Team Selection Test for IMO 2019

www.artofproblemsolving.com/community/c744239
by CantonMathGuy, tastymath75025

TST\#1 Thursday, December 6th, 2018
1 Let $A B C$ be a triangle and let M and N denote the midpoints of $\overline{A B}$ and $\overline{A C}$, respectively. Let X be a point such that $\overline{A X}$ is tangent to the circumcircle of triangle $A B C$. Denote by ω_{B} the circle through M and B tangent to $\overline{M X}$, and by ω_{C} the circle through N and C tangent to $\overline{N X}$. Show that ω_{B} and ω_{C} intersect on line $B C$.

Merlijn Staps

2 Let $\mathbb{Z} / n \mathbb{Z}$ denote the set of integers considered modulo n (hence $\mathbb{Z} / n \mathbb{Z}$ has n elements). Find all positive integers n for which there exists a bijective function $g: \mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / n \mathbb{Z}$, such that the 101 functions

$$
g(x), \quad g(x)+x, \quad g(x)+2 x, \quad \ldots, \quad g(x)+100 x
$$

are all bijections on $\mathbb{Z} / n \mathbb{Z}$.
Ashwin Sah and Yang Liu
$3 \quad \mathrm{~A}$ [i]snake of length $k[/ \mathrm{i}]$ is an animal which occupies an ordered k-tuple $\left(s_{1}, \ldots, s_{k}\right)$ of cells in a $n \times n$ grid of square unit cells. These cells must be pairwise distinct, and s_{i} and s_{i+1} must share a side for $i=1, \ldots, k-1$. If the snake is currently occupying $\left(s_{1}, \ldots, s_{k}\right)$ and s is an unoccupied cell sharing a side with s_{1}, the snake can move to occupy ($s, s_{1}, \ldots, s_{k-1}$) instead. The snake has turned around if it occupied $\left(s_{1}, s_{2}, \ldots, s_{k}\right)$ at the beginning, but after a finite number of moves occupies $\left(s_{k}, s_{k-1}, \ldots, s_{1}\right)$ instead.

Determine whether there exists an integer $n>1$ such that: one can place some snake of length $0.9 n^{2}$ in an $n \times n$ grid which can turn around.

Nikolai Beluhov

TST\#2 Thursday, January 17th, 2019
$4 \quad$ We say that a function $f: \mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0} \rightarrow \mathbb{Z}$ is great if for any nonnegative integers m and n,

$$
f(m+1, n+1) f(m, n)-f(m+1, n) f(m, n+1)=1 .
$$

If $A=\left(a_{0}, a_{1}, \ldots\right)$ and $B=\left(b_{0}, b_{1}, \ldots\right)$ are two sequences of integers, we write $A \sim B$ if there exists a great function f satisfying $f(n, 0)=a_{n}$ and $f(0, n)=b_{n}$ for every nonnegative integer n (in particular, $a_{0}=b_{0}$).

Prove that if A, B, C, and D are four sequences of integers satisfying $A \sim B, B \sim C$, and $C \sim D$, then $D \sim A$.

Ankan Bhattacharya

$5 \quad$ Let n be a positive integer. Tasty and Stacy are given a circular necklace with $3 n$ sapphire beads and $3 n$ turquoise beads, such that no three consecutive beads have the same color. They play a cooperative game where they alternate turns removing three consecutive beads, subject to the following conditions:
-Tasty must remove three consecutive beads which are turquoise, sapphire, and turquoise, in that order, on each of his turns.
-Stacy must remove three consecutive beads which are sapphire, turquoise, and sapphire, in that order, on each of her turns.

They win if all the beads are removed in $2 n$ turns. Prove that if they can win with Tasty going first, they can also win with Stacy going first.

Yannick Yao

$6 \quad$ Let $A B C$ be a triangle with incenter I, and let D be a point on line $B C$ satisfying $\angle A I D=90^{\circ}$. Let the excircle of triangle $A B C$ opposite the vertex A be tangent to $\overline{B C}$ at A_{1}. Define points B_{1} on $\overline{C A}$ and C_{1} on $\overline{A B}$ analogously, using the excircles opposite B and C, respectively.
Prove that if quadrilateral $A B_{1} A_{1} C_{1}$ is cyclic, then $\overline{A D}$ is tangent to the circumcircle of $\triangle D B_{1} C_{1}$. Ankan Bhattacharya

