Art of Problem Solving

AoPS Community

USA Team Selection Test for EGMO 2019

www.artofproblemsolving.com/community/c764134
by CantonMathGuy, tastymath75025

TST\#1 Thursday, December 6th, 2018
1 A 3×3 grid of unit cells is given. A [i]snake of length $k[/ \mathrm{i}]$ is an animal which occupies an ordered k-tuple of cells in this grid, say $\left(s_{1}, \ldots, s_{k}\right)$. These cells must be pairwise distinct, and s_{i} and s_{i+1} must share a side for $i=1, \ldots, k-1$. After being placed in a finite $n \times n$ grid, if the snake is currently occupying $\left(s_{1}, \ldots, s_{k}\right)$ and s is an unoccupied cell sharing a side with s_{1}, the snake can move to occupy ($s, s_{1}, \ldots, s_{k-1}$) instead. The snake has turned around if it occupied $\left(s_{1}, s_{2}, \ldots, s_{k}\right)$ at the beginning, but after a finite number of moves occupies $\left(s_{k}, s_{k-1}, \ldots, s_{1}\right)$ instead.

Find the largest integer k such that one can place some snake of length k in a 3×3 grid which can turn around.

2 Let $A B C$ be a triangle and let M and N denote the midpoints of $\overline{A B}$ and $\overline{A C}$, respectively. Let X be a point such that $\overline{A X}$ is tangent to the circumcircle of triangle $A B C$. Denote by ω_{B} the circle through M and B tangent to $\overline{M X}$, and by ω_{C} the circle through N and C tangent to $\overline{N X}$. Show that ω_{B} and ω_{C} intersect on line $B C$.

Merlijn Staps

3 Let n be a positive integer such that the number

$$
\frac{1^{k}+2^{k}+\cdots+n^{k}}{n}
$$

is an integer for any $k \in\{1,2, \ldots, 99\}$. Prove that n has no divisors between 2 and 100, inclusive.

TST\#2 Thursday, January 17th, 2019
4 For every pair (m, n) of positive integers, a positive real number $a_{m, n}$ is given. Assume that

$$
a_{m+1, n+1}=\frac{a_{m, n+1} a_{m+1, n}+1}{a_{m, n}}
$$

for all positive integers m and n. Suppose further that $a_{m, n}$ is an integer whenever $\min (m, n) \leq$ 2. Prove that $a_{m, n}$ is an integer for all positive integers m and n.

5 Let the excircle of a triangle $A B C$ opposite the vertex A be tangent to the side $B C$ at the point A_{1}. Define points B_{1} on $\overline{C A}$ and C_{1} on $\overline{A B}$ analogously, using the excircles opposite B and
C, respectively. Denote by γ the circumcircle of triangle $A_{1} B_{1} C_{1}$ and assume that γ passes through vertex A.

- Show that $\overline{A A_{1}}$ is a diameter of γ.
- Show that the incenter of $\triangle A B C$ lies on line $B_{1} C_{1}$.
$6 \quad$ Let n be a positive integer. Tasty and Stacy are given a circular necklace with $3 n$ sapphire beads and $3 n$ turquoise beads, such that no three consecutive beads have the same color. They play a cooperative game where they alternate turns removing three consecutive beads, subject to the following conditions:
-Tasty must remove three consecutive beads which are turquoise, sapphire, and turquoise, in that order, on each of his turns.
-Stacy must remove three consecutive beads which are sapphire, turquoise, and sapphire, in that order, on each of her turns.

They win if all the beads are removed in $2 n$ turns. Prove that if they can win with Tasty going first, they can also win with Stacy going first.

Yannick Yao

