Art of Problem Solving

AoPS Community

Brazil National Olympiad 2018

www.artofproblemsolving.com/community/c774916
by pablock, mcyoder, Math5000, Mathematics73, mathisreal

Day 1 Tuesday, November 13
1 We say that a polygon P is inscribed in another polygon Q when all vertices of P belong to perimeter of Q. We also say in this case that Q is circumscribed to P. Given a triangle T, let l be the maximum value of the side of a square inscribed in T and L be the minimum value of the side of a square circumscribed to T. Prove that for every triangle T the inequality $L / l \geq 2$ holds and find all the triangles T for which the equality occurs.

2 Azambuja writes a rational number q on a blackboard. One operation is to delete q and replace it by $q+1$; or by $q-1$; or by $\frac{q-1}{2 q-1}$ if $q \neq \frac{1}{2}$. The final goal of Azambuja is to write the number $\frac{1}{2018}$ after performing a finite number of operations.
a) Show that if the initial number written is 0 , then Azambuja cannot reach his goal.
b) Find all initial numbers for which Azambuja can achieve his goal.

3 Let k, n be fixed positive integers. In a circular table, there are placed pins numbered successively with the numbers $1,2 \ldots, n$, with 1 and n neighbors. It is known that pin 1 is golden and the others are white. Arnaldo and Bernaldo play a game, in which a ring is placed initially on one of the pins and at each step it changes position. The game begins with Bernaldo choosing a starting pin for the ring, and the first step consists of the following: Arnaldo chooses a positive integer d any and Bernaldo moves the ring d pins clockwise or counterclockwise (positions are considered modulo n, i.e., pins x, y equal if and only if n divides $x-y$). After that, the ring changes its position according to one of the following rules, to be chosen at every step by Arnaldo:

Rule 1: Arnaldo chooses a positive integer d and Bernaldo moves the ring d pins clockwise or counterclockwise.

Rule 2: Arnaldo chooses a direction (clockwise or counterclockwise), and Bernaldo moves the ring in the chosen direction in d or $k d$ pins, where d is the size of the last displacement performed.

Arnaldo wins if, after a finite number of steps, the ring is moved to the golden pin. Determine, as a function of k, the values of n for which Arnaldo has a strategy that guarantees his victory, no matter how Bernaldo plays.

Day 2 Wednesday, November 14

4 Esmeralda writes $2 n$ real numbers $x_{1}, x_{2}, \ldots, x_{2 n}$, all belonging to the interval [0,1$]$, around a circle and multiplies all the pairs of numbers neighboring to each other, obtaining, in the counterclockwise direction, the products $p_{1}=x_{1} x_{2}, p_{2}=x_{2} x_{3}, \ldots, p_{2 n}=x_{2 n} x_{1}$. She adds the
products with even indices and subtracts the products with odd indices. What is the maximum possible number Esmeralda can get?

5 Consider the sequence in which $a_{1}=1$ and a_{n} is obtained by juxtaposing the decimal representation of n at the end of the decimal representation of a_{n-1}. That is, $a_{1}=1, a_{2}=12, a_{3}=123$, $\ldots, a_{9}=123456789, a_{10}=12345678910$ and so on. Prove that infinitely many numbers of this sequence are multiples of 7 .

6 Consider $4 n$ points in the plane, with no three points collinear. Using these points as vertices, we form $\binom{4 n}{3}$ triangles. Show that there exists a point X of the plane that belongs to the interior of at least $2 n^{3}$ of these triangles.

Level 2 -

1 Every day from day 2, neighboring cubes (cubes with common faces) to red cubes also turn red and are numbered with the day number.

2 We say that a quadruple (A, B, C, D) is dobarulho when A, B, C are non-zero algorisms and D is a positive integer such that: $1 . A \leq 82 . D>13 . D$ divides the six numbers $\overline{A B C}, \overline{B C A}, \overline{C A B}$, $\overline{(A+1) C B}, \overline{C B(A+1)}, \overline{B(A+1) C}$.
Find all such quadruples.
3 Let $A B C$ be an acute-angled triangle with circumcenter O and orthocenter H. The circle with center X_{a} passes in the points A and H and is tangent to the circumcircle of $A B C$. Define X_{b}, X_{c} analogously, let O_{a}, O_{b}, O_{c} the symmetric of O to the sides $B C, A C$ and $A B$, respectively. Prove that the lines $O_{a} X_{a}, O_{b} X_{b}, O_{c} X_{c}$ are concurrents.

4 a) In a $X Y Z$ triangle, the incircle tangents the $X Y$ and $X Z$ sides at the T and W points, respectively. Prove that:

$$
X T=X W=\frac{X Y+X Z-Y Z}{2}
$$

Let $A B C$ be a triangle and D is the foot of the relative height next to A. Are I and J the incentives from triangle $A B D$ and $A C D$, respectively. The circles of $A B D$ and $A C D$ tangency $A D$ at points M and N, respectively. Let P be the tangency point of the $B C$ circle with the $A B$ side. The center circle A and radius $A P$ intersect the height D at K.
b) Show that the triangles $I M K$ and $K N J$ are congruent
c) Show that the IDJK quad is inscritibed

5 One writes, initially, the numbers $1,2,3, \ldots, 10$ in a board. An operation is to delete the numbers a, b and write the number $a+b+\frac{a b}{f(a, b)}$, where $f(a, b)$ is the sum of all numbers in the board excluding a and b, one will make this until remain two numbers x, y with $x \geq y$. Find the maximum value of x.

6 Let $S(n)$ be the sum of digits of n. Determine all the pairs (a, b) of positive integers, such that the expression $S(a n+b)-S(n)$ has a finite number of values, where n is varying in the positive integers.

