AoPS Community

2019 China National Olympiad

www.artofproblemsolving.com/community/c789151
by lifeisgood03, sqing, mofumofu, 61plus

- Day 1

1 Let $a, b, c, d, e \geq-1$ and $a+b+c+d+e=5$. Find the maximum and minimum value of $S=(a+b)(b+c)(c+d)(d+e)(e+a)$.

2 Call a set of 3 positive integers $\{a, b, c\}$ a Pythagorean set if a, b, c are the lengths of the 3 sides of a right-angled triangle. Prove that for any 2 Pythagorean sets P, Q, there exists a positive integer $m \geq 2$ and Pythagorean sets $P_{1}, P_{2}, \ldots, P_{m}$ such that $P=P_{1}, Q=P_{m}$, and $\forall 1 \leq i \leq m-1, P_{i} \cap P_{i+1} \neq \emptyset$.

3 Let O be the circumcenter of $\triangle A B C(A B<A C)$, and D be a point on the internal angle bisector of $\angle B A C$. Point E lies on $B C$, satisfying $O E \| A D, D E \perp B C$. Point K lies on $E B$ extended such that $E K=E A$. The circumcircle of $\triangle A D K$ meets $B C$ at $P \neq K$, and meets the circumcircle of $\triangle A B C$ at $Q \neq A$. Prove that $P Q$ is tangent to the circumcircle of $\triangle A B C$.

- Day 2

4 Given an ellipse that is not a circle.
(1) Prove that the rhombus tangent to the ellipse at all four of its sides with minimum area is unique.
(2) Construct this rhombus using a compass and a straight edge.

5 Given is an $n \times n$ board, with an integer written in each grid. For each move, I can choose any grid, and add 1 to all $2 n-1$ numbers in its row and column. Find the largest $N(n)$, such that for any initial choice of integers, I can make a finite number of moves so that there are at least $N(n)$ even numbers on the board.

6 The point $P_{1}, P_{2}, \cdots, P_{2018}$ is placed inside or on the boundary of a given regular pentagon. Find all placement methods are made so that

$$
S=\sum_{1 \leq i<j \leq 2018}\left|P_{i} P_{j}\right|^{2}
$$

takes the maximum value.

