AoPS Community

Cono Sur Olympiad 2015

www.artofproblemsolving.com/community/c79279
by Leicich, drmzjoseph

- Day 1

1 Show that, for any integer n, the number $n^{3}-9 n+27$ is not divisible by 81 .
$23 n$ lines are drawn on the plane ($n>1$), such that no two of them are parallel and no three of them are concurrent. Prove that, if $2 n$ of the lines are coloured red and the other n lines blue, there are at least two regions of the plane such that all of their borders are red.

Note: for each region, all of its borders are contained in the original set of lines, and no line passes through the region.

3 Given a acute triangle $P A_{1} B_{1}$ is inscribed in the circle Γ with radius 1 . for all integers $n \geq 1$ are defined: C_{n} the foot of the perpendicular from P to $A_{n} B_{n} O_{n}$ is the center of $\odot\left(P A_{n} B_{n}\right) A_{n+1}$ is the foot of the perpendicular from C_{n} to $P A_{n} B_{n+1} \equiv P B_{n} \cap O_{n} A_{n+1}$
If $P C_{1}=\sqrt{2}$, find the length of $P O_{2015}$
Cono Sur Olympiad - 2015 - Day 1 - Problem 3

- Day 2

4 Let $A B C D$ be a convex quadrilateral such that $\angle B A D=90^{\circ}$ and its diagonals $A C$ and $B D$ are perpendicular. Let M be the midpoint of side $C D$, and E be the intersection of $B M$ and $A C$. Let F be a point on side $A D$ such that $B M$ and $E F$ are perpendicular. If $C E=A F \sqrt{2}$ and $F D=C E \sqrt{2}$, show that $A B C D$ is a square.

5 Determine if there exists an infinite sequence of not necessarily distinct positive integers $a_{1}, a_{2}, a_{3}, \ldots$ such that for any positive integers m and n where $1 \leq m<n$, the number $a_{m+1}+a_{m+2}+\ldots+a_{n}$ is not divisible by $a_{1}+a_{2}+\ldots+a_{m}$.

6 Let $S=\{1,2,3, \ldots, 2046,2047,2048\}$. Two subsets A and B of S are said to be friends if the following conditions are true:

- They do not share any elements.
- They both have the same number of elements.
- The product of all elements from A equals the product of all elements from B.

Prove that there are two subsets of S that are friends such that each one of them contains at least 738 elements.

