AoPS Community

www.artofproblemsolving.com/community/c797971
by XbenX

- In a society some people know each other. For a positive integer $k \geq 3$ we say the society is k-good, if any k-tuple of people can be seated in a round table, so that any two neighbours know each other.
Prove that , if a society is 6 -good , then it is also 7 -good .
Proposed by Josef Tkadlec
- \quad Real numbers x, y, z are chosen such that

$$
\frac{1}{\left|x^{2}+2 y z\right|}, \frac{1}{\left|y^{2}+2 z x\right|}, \frac{1}{\left|x^{2}+2 x y\right|}
$$

are lengths of a non-degenerate triangle .
Find all possible values of $x y+y z+z x$.
Proposed by Michael Rolnek

- \quad In $\triangle A B C$,let D be the intersection of angle bisector of $\angle B A C$ and $B C$.

Let E, F be the circumcenters of $\triangle A B D, \triangle A C D$, respectively.
What is the size of $\angle B A C$ if the circumcenter of $\triangle A E F$ lies on the line $B C$.
Proposed by Patrik Bak

- Let a, b, c be a triple of integers , which are triangle sides, and do not have a common divisor greater than 1 , for wich all three

$$
\frac{a^{2}+b^{2}-c^{2}}{a+b-c}, \frac{b^{2}+c^{2}-a^{2}}{b+c-a}, \frac{c^{2}+a^{2}-b^{2}}{c+a-b}
$$

are integers.
Prove that the product of the three denominators or it's double is a perfect square .
Proposed by Jaromr imia

- \quad An isosceles trapezium $A B C D$ is given, such that $A B$ is the longest base.

Let I be the incenter of of $\triangle A B C$, and J be the C-excenter of $\triangle A C D$.
Prove that $I J \| A B$.
Proposed by Patrik Bak

- \quad Find the smallest natural number n such that for any coloration of the numbers $1,2, \ldots n$ with three different colors, there exists 2 numbers of the same color, whose difference is a perfect square.

Proposed by Vojitech Blint, Michael Rolnek, Josef Tkadlec

