

## **AoPS Community**

www.artofproblemsolving.com/community/c797971

by XbenX

- In a society some people know each other. For a positive integer  $k \ge 3$  we say the society is *k*-good, if any *k*-tuple of people can be seated in a round table, so that any two neighbours know each other.

Prove that , if a society is 6-good , then it is also 7-good .

Proposed by Josef Tkadlec

- Real numbers *x*, *y*, *z* are chosen such that

$$\frac{1}{|x^2+2yz|}, \frac{1}{|y^2+2zx|}, \frac{1}{|x^2+2xy|}$$

are lengths of a non-degenerate triangle . Find all possible values of xy + yz + zx.

Proposed by Michael Rolnek

- In  $\triangle ABC$ , let *D* be the intersection of angle bisector of  $\angle BAC$  and *BC*. Let *E*, *F* be the circumcenters of  $\triangle ABD$ ,  $\triangle ACD$ , respectively. What is the size of  $\angle BAC$  if the circumcenter of  $\triangle AEF$  lies on the line *BC*.

Proposed by Patrik Bak

- Let *a*, *b*, *c* be a triple of integers , which are triangle sides , and do not have a common divisor greater than 1, for wich all three

$$\frac{a^2+b^2-c^2}{a+b-c}, \frac{b^2+c^2-a^2}{b+c-a}, \frac{c^2+a^2-b^2}{c+a-b}$$

are integers. Prove that the product of the three denominators or it's double is a perfect square .

Proposed by Jaromr imia

- An isosceles trapezium ABCD is given, such that AB is the longest base. Let I be the incenter of of  $\triangle ABC$ , and J be the C-excenter of  $\triangle ACD$ . Prove that  $IJ \parallel AB$ .

Proposed by Patrik Bak

## **AoPS Community**

- Find the smallest natural number *n* such that for any coloration of the numbers 1, 2, ... *n* with three different colors, there exists 2 numbers of the same color, whose difference is a perfect square.

Proposed by Vojitech Blint , Michael Rolnek, Josef Tkadlec

AoPS Online 🔯 AoPS Academy 🙋 AoPS & CADEMY