Art of Problem Solving

AoPS Community

2015 Bosnia Herzegovina Team Selection Test

Bosnia Herzegovina Team Selection Test 2015

www.artofproblemsolving.com/community/c81545
by gobathegreat

- Day 1

1 Determine the minimum value of the expression

$$
\frac{a+1}{a(a+2)}+\frac{b+1}{b(b+2)}+\frac{c+1}{c(c+2)}
$$

for positive real numbers a, b, c such that $a+b+c \leq 3$.
2 Let D be an arbitrary point on side $A B$ of triangle $A B C$. Circumcircles of triangles $B C D$ and $A C D$ intersect sides $A C$ and $B C$ at points E and F, respectively. Perpendicular bisector of $E F$ cuts $A B$ at point M, and line perpendicular to $A B$ at D at point N. Lines $A B$ and $E F$ intersect at point T, and the second point of intersection of circumcircle of triangle $C M D$ and line $T C$ is U. Prove that $N C=N U$

3 Prove that there exist infinitely many composite positive integers n such that n divides 3^{n-1} -2^{n-1}.

- Day 2
$4 \quad$ Let X be a set which consists from 8 consecutive positive integers. Set X is divided on two disjoint subsets A and B with equal number of elements. If sum of squares of elements from set A is equal to sum of squares of elements from set B, prove that sum of elements of set A is equal to sum of elements of set B.

5 Let N be a positive integer. It is given set of weights which satisfies following conditions:
i) Every weight from set has some weight from $1,2, \ldots, N$;
ii) For every $i \in 1,2, \ldots, N$ in given set there exists weight i;
iii) Sum of all weights from given set is even positive integer.

Prove that set can be partitioned into two disjoint sets which have equal weight
6 Let D, E and F be points in which incircle of triangle $A B C$ touches sides $B C, C A$ and $A B$, respectively, and let I be a center of that circle.Furthermore, let P be a foot of perpendicular from point I to line $A D$, and let M be midpoint of $D E$. If $\{N\}=P M \cap A C$, prove that $D N \| E F$

