

AoPS Community

Serbia Additional Team Selection Test 2013

www.artofproblemsolving.com/community/c82124 by mihajlon

1 We call polynomials $A(x) = a_n x^n + ... + a_1 x + a_0$ and $B(x) = b_m x^m + ... + b_1 x + b_0$ $(a_n b_m \neq 0)$ similar if the following conditions hold: (i) n = m; (ii) There is a permutation π of the set $\{0, 1, ..., n\}$ such that $b_i = a_{\pi(i)}$ for each $i \in 0, 1, ..., n$. Let P(x) and Q(x) be similar polynomials with integer coefficients. Given that $P(16) = 3^{2012}$, find the smallest possible value of $|Q(3^{2012})|$.

Proposed by Milos Milosavljevic

2 In an acute $\triangle ABC$ ($AB \neq AC$) with angle α at the vertex *A*, point *E* is the nine-point center, and *P* a point on the segment *AE*. If $\angle ABP = \angle ACP = x$, prove that $x = 90 - 2\alpha$.

Proposed by Dusan Djukic

3 Let p > 3 be a given prime number. For a set $S \subseteq \mathbb{Z}$ and $a \in \mathbb{N}$, define $S_a = \{x \in \{0, 1, 2, ..., p-1\}$ $-(\exists_s \in S)x \equiv_p a \cdot s\} . (a)$ How many sets $S \subseteq \{1, 2, ..., p-1\}$ are there for which the sequence $S_1, S_2, ..., S_{p-1}$ contains exactly two distinct terms? (b) Determine all numbers $k \in \mathbb{N}$ for which there is a set $S \subseteq \{1, 2, ..., p-1\}$ such that the sequence $S_1, S_2, ..., S_{p-1}$ contains exactly k distinct terms.

Proposed by Milan Basic and Milos Milosavljevic

AoPS Online 🔇 AoPS Academy 🔇 AoPS 🗱

1

Art of Problem Solving is an ACS WASC Accredited School.