AoPS Community

Serbia Additional Team Selection Test 2013

www.artofproblemsolving.com/community/c82124
by mihajlon

1 We call polynomials $A(x)=a_{n} x^{n}+\ldots+a_{1} x+a_{0}$ and $B(x)=b_{m} x^{m}+\ldots+b_{1} x+b_{0}$ ($a_{n} b_{m} \neq 0$) similar if the following conditions hold: $(i) n=m$; (ii) There is a permutation π of the set $\{0,1, \ldots, n\}$ such that $b_{i}=a_{\pi(i)}$ for each $i \in 0,1, \ldots, n$.
Let $P(x)$ and $Q(x)$ be similar polynomials with integer coefficients. Given that $P(16)=3^{2012}$, find the smallest possible value of $\left|Q\left(3^{2012}\right)\right|$.
Proposed by Milos Milosavljevic
2 In an acute $\triangle A B C(A B \neq A C)$ with angle α at the vertex A, point E is the nine-point center, and P a point on the segment $A E$. If $\angle A B P=\angle A C P=x$, prove that $x=90-2 \alpha$.
Proposed by Dusan Djukic
$3 \quad$ Let $p>3$ be a given prime number. For a set $S \subseteq \mathbb{Z}$ and $a \in \mathbb{N}$, define $S_{a}=\{x \in\{0,1,2, \ldots, p-1\}$ $\left.-\left(\exists_{s} \in S\right) x \equiv_{p} a \cdot s\right\} .(a)$ How many sets $S \subseteq\{1,2, \ldots, p-1\}$ are there for which the sequence $S_{1}, S_{2}, \ldots, S_{p-1}$ contains exactly two distinct terms? (b) Determine all numbers $k \in \mathbb{N}$ for which there is a set $S \subseteq\{1,2, \ldots, p-1\}$ such that the sequence $S_{1}, S_{2}, \ldots, S_{p-1}$ contains exactly k distinct terms.
Proposed by Milan Basic and Milos Milosavljevic

