AoPS Community

Japan MO Finals 2019

www.artofproblemsolving.com/community/c831682
by Kunihiko_Chikaya

1 Find all triples (a, b, c) of positive integers such that

$$
a^{2}+b+3=\left(b^{2}-c^{2}\right)^{2} .
$$

2 Let $n \geq 3$ be an odd number. We will play a game using a n by n grid. The game is comprised of n^{2} turns, in every turn, we will perform the following operation sequentially.

- We will choose a square with an unwritten integer, and write down an integer among 1 through n^{2}. We can write down any integer only at once through the game.
- For each row, colum including the square, if the sum of integers is a multiple of n, then we will get 1 point (both of each sum is a multiple of n, we will get 2 points).

Determine the maximum possible value of the points as the total sum that we can obtain by the end of the game.
$3 \quad$ Find all functions $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$such that

$$
f\left(\frac{f(y)}{f(x)}+1\right)=f\left(x+\frac{y}{x}+1\right)-f(x)
$$

for all $x, y \in \mathbb{R}^{+}$.
4 Let $A B C$ be a triangle with its inceter I, incircle w, and let M be a midpoint of the side $B C$. A line through the point A perpendicular to the line $B C$ and a line through the point M perpendicular to the line $A I$ meet at K. Show that a circle with line segment $A K$ as the diameter touches w.

5 Let S be a set which is comprised of positive integers. We call S a beautiful number when the element belonging to S of which any two distinct elements x, y, z, at least of them will be a divisor of $x+y+z$. Show that there exists an integer N satisfying the following condition, and also determine the smallest N as such :

For any set S of beautiful number, there exists, $n_{s} \geq 2$ being an integer, the number of the element belonging to S which is not a multiple of n_{s}, is less than or equal to N.

