AoPS Community

China Second Round Olympiad 2017
www.artofproblemsolving.com/community/c831699
by Snakes, sqing, Hermitianism, sccdgsy

- \quad Test 1

2 Let x, y are real numbers such that $x^{2}+2 \cos y=1$. Find the ranges of $x-\cos y$.
10 Let $x_{1}, x_{2}, x_{3} \geq 0$ and $x_{1}+x_{2}+x_{3}=1$. Find the minimum value and the maximum value of $\left(x_{1}+3 x_{2}+5 x_{3}\right)\left(x_{1}+\frac{x_{2}}{3}+\frac{x_{3}}{5}\right)$.

- \quad Test 2

1 Given an isocleos triangle $A B C$ with equal sides $A B=A C$ and incenter I. Let Γ_{1} be the circle centered at A with radius $A B, \Gamma_{2}$ be the circle centered at I with radius $B I$.A circle Γ_{3} passing through B, I intersects Γ_{1}, Γ_{2} again at P, Q (different from B) respectively.Let R be the intersection of $P I$ and $B Q$. Show that $B R \perp C R$.

2 Given a sequence $\left\{a_{n}\right\}: a_{1}=1, a_{n+1}=\left\{\begin{array}{ll}a_{n}+n, & a_{n} \leq n, \\ a_{n}-n, & a_{n}>n,\end{array} \quad n=1,2, \cdots\right.$.
Find the number of positive integers r satisfying $a_{r}<r \leq 3^{2017}$.
3 Each square of a 33×33 square grid is colored in one of the three colors: red, yellow or blue, such that the numbers of squares in each color are the same. If two squares sharing a common edge are in different colors, call that common edge a separating edge. Find the minimal number of separating edges in the grid.

4 Let m, n be integers greater than $1, m \geq n, a_{1}, a_{2}, \ldots, a_{n}$ are n distinct numbers not exceed m, which are relatively primitive. Show that for any real x, there exists i for which $\left\|a_{i} x\right\| \geq \frac{2}{m(m+1)}\|x\|$,where $\|x\|$ denotes the distance between x and the nearest integer to x.

