

AoPS Community

2017 China Second Round Olympiad

China Second Round Olympiad 2017

www.artofproblemsolving.com/community/c831699

by Snakes, sqing, Hermitianism, sccdgsy

-	Test 1
2	Let x, y are real numbers such that $x^2 + 2cosy = 1$. Find the ranges of $x - cosy$.
10	Let $x_1, x_2, x_3 \ge 0$ and $x_1 + x_2 + x_3 = 1$. Find the minimum value and the maximum value of $(x_1 + 3x_2 + 5x_3)(x_1 + \frac{x_2}{3} + \frac{x_3}{5})$.
-	Test 2
1	Given an isocleos triangle ABC with equal sides $AB = AC$ and incenter I .Let Γ_1 be the circle centered at A with radius AB,Γ_2 be the circle centered at I with radius BI .A circle Γ_3 passing through B, I intersects Γ_1,Γ_2 again at P, Q (different from B) respectively.Let R be the intersection of PI and BQ .Show that $BR \perp CR$.
2	Given a sequence $\{a_n\}$: $a_1 = 1, a_{n+1} = \begin{cases} a_n + n, & a_n \leq n, \\ a_n - n, & a_n > n, \end{cases}$ $n = 1, 2, \cdots$. Find the number of positive integers r satisfying $a_r < r \leq 3^{2017}$.
3	Each square of a 33×33 square grid is colored in one of the three colors: red, yellow or blue, such that the numbers of squares in each color are the same. If two squares sharing a common edge are in different colors, call that common edge a separating edge. Find the minimal number of separating edges in the grid.
4	Let m, n be integers greater than $1, m \ge n, a_1, a_2, \ldots, a_n$ are n distinct numbers not exceed m , which are relatively primitive. Show that for any real x , there exists i for which $ a_ix \ge \frac{2}{m(m+1)} x $, where $ x $ denotes the distance between x and the nearest integer to x .

Art of Problem Solving is an ACS WASC Accredited School.