AoPS Community

Singapore MO 2008

www.artofproblemsolving.com/community/c831721
by joh, dominicleejun
$1 \quad$ Find all pairs of positive integers (n, k) so that $(n+1)^{k}-1=n$!.
2 in the acute triangle $\triangle A B C$.
M is a point in the interior of the segment $A C$ and N is a point on the extension of segment $A C$ such that $M N=A C$.
let D, E be the feet of perpendiculars from M, N onto lines $B C, A B$ respectively
prove that the orthocentre of $\triangle A B C$ lies on circumcircle of $\triangle B E D$
3 let n, m be positive integers st $m>n \geq 5$ with m depending on n .
consider the sequence $a_{1}, a_{2}, \ldots a_{m}$ where $a_{i}=i$ for $i=1, \ldots, n a_{n+j}=a_{3 j}+a_{3 j-1}+a_{3 j-2}$ for $j=1, . ., m-n$
with $m-3(m-n)=1$ or 2 , ie $a_{m}=a_{m-k}+a_{m-k-1}+a_{m-k-2}$ where $\mathrm{k}=1$ or 2
(Thus if $n=5$, the sequence is $1,2,3,4,5,6,15$
and if $n=8$, the sequence is $1,2,3,4,5,6,7,8,6,15,21$)
Find $S=a_{1}+\ldots+a_{m}$ if (i) $n=2007$ (ii) $n=2008$
4 let $0<a, b<\pi / 2$. Show that $\frac{5}{\cos ^{2}(a)}+\frac{5}{\sin ^{2}(a) \sin ^{2}(b) \cos ^{2}(b)} \geq 27 \cos (a)+36 \sin (a)$
5 consider a 2008×2008 chess board. let M be the smallest no of rectangles that can be drawn on the chess board so that sides of every cell of the board is contained in the sides of one of the rectangles. find the value of M. (eg for 2×3 chessboard, the value of M is 3 .)

