AoPS Community

India National Olympiad 2019

www.artofproblemsolving.com/community/c831794
by div5252

1 Let $A B C$ be a triangle with $\angle B A C>90$. Let D be a point on the segment $B C$ and E be a point on line $A D$ such that $A B$ is tangent to the circumcircle of triangle $A C D$ at A and $B E$ is perpendicular to $A D$. Given that $C A=C D$ and $A E=C E$. Determine $\angle B C A$ in degrees.

2 Let $A_{1} B_{1} C_{1} D_{1} E_{1}$ be a regular pentagon. For $2 \leq n \leq 11$, let $A_{n} B_{n} C_{n} D_{n} E_{n}$ be the pentagon whose vertices are the midpoint of the sides $A_{n-1} B_{n-1} C_{n-1} D_{n-1} E_{n-1}$. All the 5 vertices of each of the 11 pentagons are arbitrarily coloured red or blue. Prove that four points among these 55 points have the same colour and form the vertices of a cyclic quadrilateral.

3 Let m, n be distinct positive integers. Prove that

$$
\operatorname{gcd}(m, n)+g c d(m+1, n+1)+\operatorname{gcd}(m+2, n+2) \leq 2|m-n|+1 .
$$

Further, determine when equality holds.
$4 \quad$ Let n and M be positive integers such that $M>n^{n-1}$. Prove that there are n distinct primes $p_{1}, p_{2}, p_{3} \cdots, p_{n}$ such that p_{j} divides $M+j$ for all $1 \leq j \leq n$.
$5 \quad$ Let $A B$ be the diameter of a circle Γ and let C be a point on Γ different from A and B. Let D be the foot of perpendicular from C on to $A B$. Let K be a point on the segment $C D$ such that $A C$ is equal to the semi perimeter of $A D K$. Show that the excircle of $A D K$ opposite A is tangent to Γ.

6 Let f be a function defined from ($(x, y): x, y$ real, $x y \neq 0)$ to the set of all positive real numbers such that $(i) f(x y, z)=f(x, z) \cdot f(y, z)$ for all $x, y \neq 0(i i) f(x, y z)=f(x, y) \cdot f(x, z)$ for all $x, y \neq 0$ (iii) $f(x, 1-x)=1$ for all $x \neq 0,1$

Prove that $(a) f(x, x)=f(x,-x)=1$ for all $x \neq 0(b) f(x, y) \cdot f(y, x)=1$ for all $x, y \neq 0$
The condition (ii) was left out in the paper leading to an incomplete problem during contest.

