AoPS Community

11th RMM 2019

www.artofproblemsolving.com/community/c836819
by Snakes, math90, rmtf1111, CantonMathGuy

- Day 1

1 Amy and Bob play the game. At the beginning, Amy writes down a positive integer on the board. Then the players take moves in turn, Bob moves first. On any move of his, Bob replaces the number n on the blackboard with a number of the form $n-a^{2}$, where a is a positive integer. On any move of hers, Amy replaces the number n on the blackboard with a number of the form n^{k}, where k is a positive integer. Bob wins if the number on the board becomes zero. Can Amy prevent Bobs win?

Maxim Didin, Russia

2 Let $A B C D$ be an isosceles trapezoid with $A B \| C D$. Let E be the midpoint of $A C$. Denote by ω and Ω the circumcircles of the triangles $A B E$ and $C D E$, respectively. Let P be the crossing point of the tangent to ω at A with the tangent to Ω at D. Prove that $P E$ is tangent to Ω.

Jakob Jurij Snoj, Slovenia
3 Given any positive real number ε, prove that, for all but finitely many positive integers v, any graph on v vertices with at least $(1+\varepsilon) v$ edges has two distinct simple cycles of equal lengths. (Recall that the notion of a simple cycle does not allow repetition of vertices in a cycle.)

Fedor Petrov, Russia

- Day 2

4 Prove that for every positive integer n there exists a (not necessarily convex) polygon with no three collinear vertices, which admits exactly n diffferent triangulations.
(A triangulation is a dissection of the polygon into triangles by interior diagonals which have no common interior points with each other nor with the sides of the polygon)

5 Determine all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying

$$
f(x+y f(x))+f(x y)=f(x)+f(2019 y),
$$

for all real numbers x and y.
6 Find all pairs of integers (c, d), both greater than 1, such that the following holds:

For any monic polynomial Q of degree d with integer coefficients and for any prime $p>c(2 c+$ $1)$, there exists a set S of at most $\left(\frac{2 c-1}{2 c+1}\right) p$ integers, such that

$$
\bigcup_{s \in S}\{s, Q(s), Q(Q(s)), Q(Q(Q(s))), \ldots\}
$$

contains a complete residue system modulo p (i.e., intersects with every residue class modulo p).

