AoPS Community

Moldova Team Selection Test 2019

www.artofproblemsolving.com/community/c844305
by Snakes, XxProblemDestroyer1337xX, microsoft_office_word, augustin_p

- Day 1

1 Let S be the set of all natural numbers with the property: the sum of the biggest three divisors of number n, different from n, is bigger than n. Determine the largest natural number k, which divides any number from S.
(A natural number is a positive integer)
2 Prove that $E_{n}=\frac{\arccos \frac{n-1}{n}}{\operatorname{arccot} \sqrt{2 n-1}}$ is a natural number for any natural number n.
(A natural number is a positive integer)
3 On the table there are written numbers $673,674, \cdots, 2018$, 2019. Nibab chooses arbitrarily three numbers a, b and c, erases them and writes the number $\frac{\min (a, b, c)}{3}$, then he continues in an analogous way. After Nibab performed this operation 673 times, on the table remained a single number k. Prove that $k \in(0,1)$.

4 Quadrilateral $A B C D$ is inscribed in circle Γ with center O. Point I is the incenter of triangle $A B C$, and point J is the incenter of the triangle $A B D$. Line $I J$ intersects segments $A D, A C, B D, B C$ at points P, M, N and, respectively Q. The perpendicular from M to line $A C$ intersects the perpendicular from N to line $B D$ at point X. The perpendicular from P to line $A D$ intersects the perpendicular from Q to line $B C$ at point Y. Prove that X, O, Y are colinear.

- Day 2

5 Point H is the orthocenter of the scalene triangle $A B C$. A line, which passes through point H, intersect the sides $A B$ and $A C$ at points D and E, respectively, such that $A D=A E$. Let M be the midpoint of side $B C$. Line $M H$ intersects the circumscribed circle of triangle $A B C$ at point K, which is on the smaller arc $A B$. Prove that Nibab can draw a circle through A, D, E and K.
$6 \quad$ Let $a, b, c \geq 0$ such that $a+b+c=1$ and $s \geq 5$.
Prove that $s\left(a^{2}+b^{2}+c^{2}\right) \leq 3(s-3)\left(a^{3}+b^{3}+c^{3}\right)+1$
7 Let $P(X)=a_{2 n+1} X^{2 n+1}+a_{2 n} X^{2 n}+\ldots+a_{1} X+a_{0}$ be a polynomial with all positive coefficients. Prove that there exists a permutation $\left(b_{2 n+1}, b_{2 n}, \ldots, b_{1}, b_{0}\right)$ of numbers $\left(a_{2 n+1}, a_{2 n}, \ldots, a_{1}, a_{0}\right)$ such that the polynomial $Q(X)=b_{2 n+1} X^{2 n+1}+b_{2 n} X^{2 n}+\ldots+b_{1} X+b_{0}$ has exactly one real root.

AoPS Community

8 For any positive integer k denote by $S(k)$ the number of solutions $(x, y) \in \mathbb{Z}_{+} \times \mathbb{Z}_{+}$of the system

$$
\left\{\begin{array}{l}
\left\lceil\frac{x \cdot d}{y}\right\rceil \cdot \frac{x}{d}=\left\lceil(\sqrt{y}+1)^{2}\right\rceil \\
|x-y|=k
\end{array}\right.
$$

where d is the greatest common divisor of positive integers x and y. Determine $S(k)$ as a function of k. (Here $\lceil z\rceil$ denotes the smalles integer number which is bigger or equal than z.)

- Day 3
$9 \quad$ Find all polynomials $P(X)$ with real coefficients such that if real numbers x, y and z satisfy $x+y+z=0$, then the points $(x, P(x)),(y, P(y)),(z, P(z))$ are all colinear.

10 The circle Ω with center O is circumscribed to acute triangle $A B C$. Let P be a point on the circumscribed circle of $O B C$, such that P is inside $A B C$ and is different from B and C. Bisectors of angles $B P A$ and $C P A$ intersect the sides $A B$ and $A C$ in points E and F. Prove that the incenters of triangles $P E F, P C A$ and $P B A$ are collinear.

11 Let $n \geq 2$, be a positive integer. Numbers $\{1,2,3, \ldots, n\}$ are written in a row in an arbitrary order. Determine the smalles positive integer k with the property: everytime it is possible to delete k numbers from those written on the table, such that the remained numbers are either in an increasing or decreasing order.

12 Let $p \geq 5$ be a prime number. Prove that there exist positive integers m and n with $m+n \leq \frac{p+1}{2}$ for which p divides $2^{n} \cdot 3^{m}-1$.

