AoPS Community

X Iberoamerican Interuniversitary Mathematics Competition - Colombia

www.artofproblemsolving.com/community/c844598
by Ozc

Problem 1 Show that there exists a 2×2 matrix of order 6 with rational entries, such that the sum of its entries is 2018.
Note: The order of a matrix (if it exists) is the smallest positive integer n such that $A^{n}=I$, where I is the identity matrix.

Problem 2 Let $p(x)$ and $q(x)$ non constant real polynomials of degree at most $n(n>1)$. Show that there exists a non zero polynomial $F(x, y)$ in two variables with real coefficients of degree at most $2 n-2$, such that $F(p(t), q(t))=0$ for every $t \in \mathbb{R}$.

Problem 3 Let m be an integer and \mathbb{Z}_{m} the set of integer modulo m. An equivalence relation is defined in \mathbb{Z}_{m} given by, $x \sim y$ if there exists a natural t such that $y \equiv 2^{t} x(\bmod m)$. Find al values of m such that the number of equivalent classes is even.

Problem 4 Let $\alpha<0<\beta$ and consider the polynomial $f(x)=x(x-\alpha)(x-\beta)$. Let S be the set of real numbers s such that $f(x)-s$ has three different real roots. For $s \in S$, let $p(x)$ the product of the smallest and largest root of $f(x)-s$. Determine the smallest possible value that $p(s)$ for $s \in S$.

Problem 5 Consider the transformation

$$
T(x, y, z)=(\sin y+\sin z-\sin x, \sin z+\sin x-\sin y, \sin x+\sin y-\sin z) .
$$

Determine all the points $(x, y, z) \in[0,1]^{3}$ such that $T^{n}(x, y, z) \in[0,1]^{3}$, for every $n \geq 1$.
Problem 6 Let $\left\{x_{n}\right\}$ be a sequence of real numbers in the interval $[0,1)$. Prove that there exists a sequence $1<n_{1}<n_{2}<n_{3}<\cdots$ of positive integers such that the following limit exists

$$
\lim _{i, j \rightarrow \infty} x_{n_{i}+n_{j}} .
$$

That is, there exists a real number L such that for every $\epsilon>0$, there exists a positive integer N such that if $i, j>N$, then $\left|x_{n_{i}+n_{j}}-L\right|<\epsilon$.

