AoPS Community

Moldova Team Selection Test 2016

www.artofproblemsolving.com/community/c845142
by Snakes, Ghd, Peter, augustin_p, XxProblemDestroyer1337xX, rkm0959

- Day 1

1 If $x_{1}, x_{2}, \ldots, x_{n}>0$ and $x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}=\frac{1}{n}$,prove that $\sum x_{i}+\sum \frac{1}{x_{i} \cdot x_{i+1}} \geq n^{3}+1$.
2 Let p be a prime number of the form $4 k+1$. Show that

$$
\sum_{i=1}^{p-1}\left(\left\lfloor\frac{2 i^{2}}{p}\right\rfloor-2\left\lfloor\frac{i^{2}}{p}\right\rfloor\right)=\frac{p-1}{2}
$$

3 Let $A B C$ be a triangle with $\angle C=90$. The tangent points of the inscribed circle with the sides $B C, C A$ and $A B$ are M, N and P. Points M_{1}, N_{1}, P_{1} are symmetric to points M, N, P with respect to midpoints of sides $B C, C A$ and $A B$. Find the smallest value of $\frac{A O_{1}+B O_{1}}{A B}$, where O_{1} is the circumcenter of triangle $M_{1} N_{1} P_{1}$.

4 Show that for every prime number p and every positive integer $n \geq 2$ there exists a positive integer k such that the decimal representation of p^{k} contains n consecutive equal digits.

- Day 2

5 The sequence of polynomials $\left(P_{n}(X)\right)_{n \in Z_{>0}}$ is defined as follows: $P_{1}(X)=2 X P_{2}(X)=2\left(X^{2}+\right.$ 1) $P_{n+2}(X)=2 X \cdot P_{n+1}(X)-\left(X^{2}-1\right) P_{n}(X)$, for all positive integers n.

Find all n for which $X^{2}+1 \mid P_{n}(X)$
$6 \quad$ Let $n \in \mathbb{Z}_{>0}$. The set S contains all positive integers written in decimal form that simultaneously satisfy the following conditions:

- each element of S has exactly n digits;
- each element of S is divisible by 3 ;
- each element of S has all its digits from the set $\{3,5,7,9\}$

Find $|S|$
$7 \quad$ Let Ω and O be the circumcircle of acute triangle $A B C$ and its center, respectively. $M \neq O$ is an arbitrary point in the interior of $A B C$ such that $A M, B M$, and $C M$ intersect Ω at A_{1}, B_{1}, and C_{1}, respectiuvely. Let A_{2}, B_{2}, and C_{2} be the circumcenters of $M B C, M C A$, and $M A B$, respectively. It is to be proven that $A_{1} A_{2}, B_{1} B_{2}, C_{1} C 2$ concur.

8 Let us have $n(n>3)$ balls with different rays. On each ball it is written an integer number. Determine the greatest natural number d such that for any numbers written on the balls, we can always find at least 4 different ways to choose some balls with the sum of the numbers written on them divisible by d.

- Day 3

9 Let $\alpha \in\left(0, \frac{\pi}{2}\right)$.Find the minimum value of the expression

$$
P=(1+\cos \alpha)\left(1+\frac{1}{\sin \alpha}\right)+(1+\sin \alpha)\left(1+\frac{1}{\cos \alpha}\right) .
$$

10 Let $A_{1} A_{2} \cdots A_{14}$ be a regular 14 -gon. Prove that $A_{1} A_{3} \cap A_{5} A_{11} \cap A_{6} A_{9} \neq \emptyset$.
11 Let $A B C D$ be a cyclic quadrilateral. Circle with diameter $A B$ intersects $C A, C B, D A$, and $D B$ in E, F, G, and H, respectively (all different from A and B). The lines $E F$ and $G H$ intersect in I. Prove that the bisector of $\angle G I F$ and the line $C D$ are perpendicular.

12 There are 2015 distinct circles in a plane, with radius 1.
Prove that you can select 27 circles, which form a set C, which satisfy the following.
For two arbitrary circles in C, they intersect with each other or For two arbitrary circles in C, they don't intersect with each other.

