

AoPS Community

2016 Moldova Team Selection Test

Moldova Team Selection Test 2016

www.artofproblemsolving.com/community/c845142

by Snakes, Ghd, Peter, augustin_p, XxProblemDestroyer1337xX, rkm0959

- Day 1
- 1 If $x_1, x_2, ..., x_n > 0$ and $x_1^2 + x_2^2 + ... + x_n^2 = \frac{1}{n}$, prove that $\sum x_i + \sum \frac{1}{x_i \cdot x_{i+1}} \ge n^3 + 1$.
- **2** Let p be a prime number of the form 4k + 1. Show that

$$\sum_{i=1}^{p-1} \left(\left\lfloor \frac{2i^2}{p} \right\rfloor - 2 \left\lfloor \frac{i^2}{p} \right\rfloor \right) = \frac{p-1}{2}.$$

- **3** Let ABC be a triangle with $\angle C = 90$. The tangent points of the inscribed circle with the sides BC, CA and AB are M, N and P. Points M_1 , N_1 , P_1 are symmetric to points M, N, P with respect to midpoints of sides BC, CA and AB. Find the smallest value of $\frac{AO_1+BO_1}{AB}$, where O_1 is the circumcenter of triangle $M_1N_1P_1$.
- **4** Show that for every prime number p and every positive integer $n \ge 2$ there exists a positive integer k such that the decimal representation of p^k contains n consecutive equal digits.
- Day 2
- 5 The sequence of polynomials $(P_n(X))_{n \in \mathbb{Z}_{>0}}$ is defined as follows: $P_1(X) = 2X P_2(X) = 2(X^2 + 1) P_{n+2}(X) = 2X \cdot P_{n+1}(X) (X^2 1)P_n(X)$, for all positive integers n. Find all n for which $X^2 + 1 | P_n(X)$
- **6** Let $n \in \mathbb{Z}_{>0}$. The set *S* contains all positive integers written in decimal form that simultaneously satisfy the following conditions:
 - each element of S has exactly n digits;
 - each element of S is divisible by 3;
 - each element of S has all its digits from the set $\{3,5,7,9\}$
 - Find $\mid S \mid$
- 7 Let Ω and O be the circumcircle of acute triangle ABC and its center, respectively. $M \neq O$ is an arbitrary point in the interior of ABC such that AM, BM, and CM intersect Ω at A_1 , B_1 , and C_1 , respectively. Let A_2 , B_2 , and C_2 be the circumcenters of MBC, MCA, and MAB, respectively. It is to be proven that A_1A_2 , B_1B_2 , C_1C2 concur.

AoPS Community

2016 Moldova Team Selection Test

8 Let us have n (n > 3) balls with different rays. On each ball it is written an integer number. Determine the greatest natural number d such that for any numbers written on the balls, we can always find at least 4 different ways to choose some balls with the sum of the numbers written on them divisible by d.

– Day 3

9 Let $\alpha \in \left(0, \frac{\pi}{2}\right)$. Find the minimum value of the expression

$$P = (1 + \cos \alpha) \left(1 + \frac{1}{\sin \alpha} \right) + (1 + \sin \alpha) \left(1 + \frac{1}{\cos \alpha} \right).$$

- **10** Let $A_1A_2 \cdots A_{14}$ be a regular 14-gon. Prove that $A_1A_3 \cap A_5A_{11} \cap A_6A_9 \neq \emptyset$.
- 11 Let ABCD be a cyclic quadrilateral. Circle with diameter AB intersects CA, CB, DA, and DB in E, F, G, and H, respectively (all different from A and B). The lines EF and GH intersect in I. Prove that the bisector of $\angle GIF$ and the line CD are perpendicular.
- **12** There are 2015 distinct circles in a plane, with radius 1. Prove that you can select 27 circles, which form a set *C*, which satisfy the following.

For two arbitrary circles in *C*, they intersect with each other or For two arbitrary circles in *C*, they don't intersect with each other.

🟟 AoPS Online 🔯 AoPS Academy 🟟 AoPS 🗱