

AIME Problems 2019

www.artofproblemsolving.com/community/c847267

by LauraZed, InflateGate, Vfire, phi_ftw1618, P_Groudon, rrusczyk, djmathman, proshi, asp211, a1b2, popcorn1, fatant, AOPS12142015, DeathLlama9

-	I
-	March 13th, 2019
1	Consider the integer $N=9+99+9999+9999+\dots+\underbrace{99\dots99}_{321\rm digits}.$ Find the sum of the digits of $N.$
2	Jenn randomly chooses a number J from $1, 2, 3,, 19, 20$. Bela then randomly chooses a number B from $1, 2, 3,, 19, 20$ distinct from J . The value of $B - J$ is at least 2 with a probability that can be expressed in the form $\frac{m}{n}$ where m and n are relatively prime positive integers. Find $m + n$.
3	In $\triangle PQR$, $PR = 15$, $QR = 20$, and $PQ = 25$. Points A and B lie on \overline{PQ} , points C and D lie on \overline{QR} , and points E and F lie on \overline{PR} , with $PA = QB = QC = RD = RE = PF = 5$. Find the area of hexagon $ABCDEF$.
4	A soccer team has 22 available players. A fixed set of 11 players starts the game, while the other 11 are available as substitutes. During the game, the coach may make as many as 3 substitutions, where any one of the 11 players in the game is replaced by one of the substitutes. No player removed from the game may reenter the game, although a substitute entering the game may be replaced later. No two substitutions can happen at the same time. The players involved and the order of the substitutions matter. Let n be the number of ways the coach can make substitutions during the game (including the possibility of making no substitutions). Find the remainder when n is divided by 1000.
5	A moving particle starts at the point $(4,4)$ and moves until it hits one of the coordinate axes for the first time. When the particle is at the point (a,b) , it moves at random to one of the points $(a-1,b)$, $(a,b-1)$, or $(a-1,b-1)$, each with probability $\frac{1}{3}$, independently of its previ- ous moves. The probability that it will hit the coordinate axes at $(0,0)$ is $\frac{m}{3^n}$, where m and n are positive integers, and m is not divisible by 3. Find $m + n$.
6	In convex quadrilateral $KLMN$ side \overline{MN} is perpendicular to diagonal \overline{KM} , side \overline{KL} is perpendicular to diagonal \overline{LN} , $MN = 65$, and $KL = 28$. The line through L perpendicular to side \overline{KN} intersects diagonal \overline{KM} at O with $KO = 8$. Find MO .

7 There are positive integers x and y that satisfy the system of equations

 $\log_{10} x + 2\log_{10}(\gcd(x, y)) = 60$ $\log_{10} y + 2\log_{10}(\operatorname{lcm}(x, y)) = 570.$

Let *m* be the number of (not necessarily distinct) prime factors in the prime factorization of *x*, and let *n* be the number of (not necessarily distinct) prime factors in the prime factorization of *y*. Find 3m + 2n.

- 8 Let x be a real number such that $\sin^{10} x + \cos^{10} x = \frac{11}{36}$. Then $\sin^{12} x + \cos^{12} x = \frac{m}{n}$ where m and n are relatively prime positive integers. Find m + n.
- 9 Let $\tau(n)$ denote the number of positive integer divisors of n. Find the sum of the six least positive integers n that are solutions to $\tau(n) + \tau(n+1) = 7$.
- **10** For distinct complex numbers $z_1, z_2, \ldots, z_{673}$, the polynomial

$$(x-z_1)^3(x-z_2)^3\cdots(x-z_{673})^3$$

can be expressed as $x^{2019} + 20x^{2018} + 19x^{2017} + g(x)$, where g(x) is a polynomial with complex coefficients and with degree at most 2016. The value of

$$\left|\sum_{1 \le j < k \le 673} z_j z_k\right|$$

can be expressed in the form $\frac{m}{n}$, where m and n are relatively prime positive integers. Find m+n.

- 11 In $\triangle ABC$, the sides have integers lengths and AB = AC. Circle ω has its center at the incenter of $\triangle ABC$. An *excircle* of $\triangle ABC$ is a circle in the exterior of $\triangle ABC$ that is tangent to one side of the triangle and tangent to the extensions of the other two sides. Suppose that the excircle tangent to \overline{BC} is internally tangent to ω , and the other two excircles are both externally tangent to ω . Find the minimum possible value of the perimeter of $\triangle ABC$.
- **12** Given $f(z) = z^2 19z$, there are complex numbers z with the property that z, f(z), and f(f(z)) are the vertices of a right triangle in the complex plane with a right angle at f(z). There are positive integers m and n such that one such value of z is $m + \sqrt{n} + 11i$. Find m + n.
- **13** Triangle *ABC* has side lengths AB = 4, BC = 5, and CA = 6. Points *D* and *E* are on ray *AB* with AB < AD < AE. The point $F \neq C$ is a point of intersection of the circumcircles of $\triangle ACD$ and $\triangle EBC$ satisfying DF = 2 and EF = 7. Then *BE* can be expressed as $\frac{a+b\sqrt{c}}{d}$, where *a*, *b*, *c*, and *d* are positive integers such that *a* and *d* are relatively prime, and *c* is not divisible by the square of any prime. Find a + b + c + d.

- **14** Find the least odd prime factor of $2019^8 + 1$.
- **15** Let \overline{AB} be a chord of a circle ω , and let P be a point on the chord \overline{AB} . Circle ω_1 passes through A and P and is internally tangent to ω . Circle ω_2 passes through B and P and is internally tangent to ω . Circles ω_1 and ω_2 intersect at points P and Q. Line PQ intersects ω at X and Y. Assume that AP = 5, PB = 3, XY = 11, and $PQ^2 = \frac{m}{n}$, where m and n are relatively prime positive integers. Find m + n.
- https://data.artofproblemsolving.com/images/maa_logo.png These problems are copyright © Mathematical Association of America (http://maa.org).
- II
- March 21st, 2019
- **1** Points $C \neq D$ lie on the same side of line AB so that $\triangle ABC$ and $\triangle BAD$ are congruent with AB = 9, BC = AD = 10, and CA = DB = 17. The intersection of these two triangular regions has area $\frac{m}{n}$, where m and n are relatively prime positive integers. Find m + n.
- 2 Lily pads 1, 2, 3, ... lie in a row on a pond. A frog makes a sequence of jumps starting on pad 1. From any pad k the frog jumps to either pad k+1 or pad k+2 chosen randomly and independently with probability $\frac{1}{2}$. The probability that the frog visits pad 7 is $\frac{p}{q}$, where p and q are relatively prime positive integers. Find p + q.
- **3** Find the number of 7-tuples of positive integers (a, b, c, d, e, f, g) that satisfy the following systems of equations:

abc = 70,cde = 71,efg = 72.

- **4** A standard six-sided fair die is rolled four times. The probability that the product of all four numbers rolled is a perfect square is $\frac{m}{n}$, where m and n are relatively prime positive integers. Find m + n.
- 5 Four ambassadors and one advisor for each of them are to be seated at a round table with 12 chairs numbered in order from 1 to 12. Each ambassador must sit in an even-numbered chair. Each advisor must sit in a chair adjacent to his or her ambassador. There are *N* ways for the 8 people to be seated at the table under these conditions. Find the remainder when *N* is divided by 1000.

6 In a Martian civilization, all logarithms whose bases are not specified are assumed to be base b, for some fixed $b \ge 2$. A Martian student writes down

$$3\log(\sqrt{x}\log x) = 56$$
$$\log_{\log(x)}(x) = 54$$

and finds that this system of equations has a single real number solution x > 1. Find b.

- 7 Triangle *ABC* has side lengths AB = 120, BC = 220, and AC = 180. Lines ℓ_A , ℓ_B , and ℓ_C are drawn parallel to \overline{BC} , \overline{AC} , and \overline{AB} , respectively, such that the intersection of ℓ_A , ℓ_B , and ℓ_C with the interior of $\triangle ABC$ are segments of length 55, 45, and 15, respectively. Find the perimeter of the triangle whose sides lie on ℓ_A , ℓ_B , and ℓ_C .
- 8 The polynomial $f(z) = az^{2018} + bz^{2017} + cz^{2016}$ has real coefficients not exceeding 2019, and $f(\frac{1+\sqrt{3}i}{2}) = 2015 + 2019\sqrt{3}i$. Find the remainder when f(1) is divided by 1000.
- **9** Call a positive integer *n k*-pretty if *n* has exactly *k* positive divisors and *n* is divisible by *k*. For example, 18 is 6-pretty. Let *S* be the sum of positive integers less than 2019 that are 20-pretty. Find $\frac{S}{20}$.
- **10** There is a unique angle θ between 0° and 90° such that for nonnegative integers *n*, the value of $\tan(2^{n}\theta)$ is positive when *n* is a multiple of 3, and negative otherwise. The degree measure of θ is $\frac{p}{a}$, where *p* and *q* are relatively prime integers. Find p + q.
- **11** Triangle *ABC* has side lengths AB = 7, BC = 8, and CA = 9. Circle ω_1 passes through *B* and is tangent to line *AC* at *A*. Circle ω_2 passes through *C* and is tangent to line *AB* at *A*. Let *K* be the intersection of circles ω_1 and ω_2 not equal to *A*. Then $AK = \frac{m}{n}$, where *m* and *n* are relatively prime positive integers. Find m + n.
- **12** For $n \ge 1$ call a finite sequence $(a_1, a_2 \dots a_n)$ of positive integers *progressive* if $a_i < a_{i+1}$ and a_i divides a_{i+1} for all $1 \le i \le n-1$. Find the number of progressive sequences such that the sum of the terms in the sequence is equal to 360.
- **13** Regular octagon $A_1A_2A_3A_4A_5A_6A_7A_8$ is inscribed in a circle of area 1. Point *P* lies inside the circle so that the region bounded by $\overline{PA_1}$, $\overline{PA_2}$, and the minor arc $\widehat{A_1A_2}$ of the circle has area $\frac{1}{7}$, while the region bounded by $\overline{PA_3}$, $\overline{PA_4}$, and the minor arc $\widehat{A_3A_4}$ of the circle has area $\frac{1}{9}$. There is a positive integer *n* such that the area of the region bounded by $\overline{PA_6}$, $\overline{PA_7}$, and the minor arc $\widehat{A_6A_7}$ is equal to $\frac{1}{8} \frac{\sqrt{2}}{n}$. Find *n*.
- **14** Find the sum of all positive integers n such that, given an unlimited supply of stamps of denominations 5, n, and n + 1 cents, 91 cents is the greatest postage that cannot be formed.

15 In acute triangle *ABC* points *P* and *Q* are the feet of the perpendiculars from *C* to \overline{AB} and from *B* to \overline{AC} , respectively. Line *PQ* intersects the circumcircle of $\triangle ABC$ in two distinct points, *X* and *Y*. Suppose XP = 10, PQ = 25, and QY = 15. The value of $AB \cdot AC$ can be written in the form $m\sqrt{n}$ where *m* and *n* are positive integers, and *n* is not divisible by the square of any prime. Find m + n.

AoPSOnline AoPSAcademy AoPS Academy

Art of Problem Solving is an ACS WASC Accredited School.