AoPS Community

China Team Selection Test 2019

www.artofproblemsolving.com/community/c848182
by MathStudent2002, 61 plus, fattypiggy123, mofumofu, sqing, liekkas

- \quad Test 1 Day 1
$1 A B C D E$ is a cyclic pentagon, with circumcentre $O . A B=A E=C D . I$ midpoint of $B C . J$ midpoint of $D E . F$ is the orthocentre of $\triangle A B E$, and G the centroid of $\triangle A I J . C E$ intersects $B D$ at $H, O G$ intersects $F H$ at M. Show that $A M \perp C D$.

2 Fix a positive integer $n \geq 3$. Does there exist infinitely many sets S of positive integers $\left\{a_{1}, a_{2}, \ldots, a_{n}\right.$, $\left.b_{1}, b_{2}, \ldots, b_{n}\right\}$, such that $\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{n}, b_{1}, b_{2}, \ldots, b_{n}\right)=1,\left\{a_{i}\right\}_{i=1}^{n},\left\{b_{i}\right\}_{i=1}^{n}$ are arithmetic progressions, and $\prod_{i=1}^{n} a_{i}=\prod_{i=1}^{n} b_{i}$?

3 Find all positive integer n, such that there exists n points P_{1}, \ldots, P_{n} on the unit circle, satisfying the condition that for any point M on the unit circle, $\sum_{i=1}^{n} M P_{i}^{k}$ is a fixed value for
a) $k=2018$
b) $k=2019$.

- \quad Test 1 Day 2

4 Call a sequence of positive integers $\left\{a_{n}\right\}$ good if for any distinct positive integers m, n, one has

$$
\operatorname{gcd}(m, n) \mid a_{m}^{2}+a_{n}^{2} \text { and } \operatorname{gcd}\left(a_{m}, a_{n}\right) \mid m^{2}+n^{2}
$$

Call a positive integer a to be k-good if there exists a good sequence such that $a_{k}=a$. Does there exists a k such that there are exactly $2019 k$-good positive integers?

5 Determine all functions $f: \mathbb{Q} \rightarrow \mathbb{Q}$ such that

$$
f\left(2 x y+\frac{1}{2}\right)+f(x-y)=4 f(x) f(y)+\frac{1}{2}
$$

for all $x, y \in \mathbb{Q}$.
6 Let k be a positive real. A and B play the following game: at the start, there are 80 zeroes arrange around a circle. Each turn, A increases some of these 80 numbers, such that the total sum added is 1 . Next, B selects ten consecutive numbers with the largest sum, and reduces them all to 0 . A then wins the game if he/she can ensure that at least one of the number is $\geq k$ at some finite point of time.

AoPS Community

2019 China Team Selection Test

Determine all k such that A can always win the game.

- \quad Test 2 Day 1
$1 \quad A B$ and $A C$ are tangents to a circle ω with center O at B, C respectively. Point P is a variable point on minor arc $B C$. The tangent at P to ω meets $A B, A C$ at D, E respectively. $A O$ meets $B P, C P$ at U, V respectively. The line through P perpendicular to $A B$ intersects $D V$ at M, and the line through P perpendicular to $A C$ intersects $E U$ at N. Prove that as P varies, $M N$ passes through a fixed point.

2 Let S be the set of 10 -tuples of non-negative integers that have sum 2019. For any tuple in S, if one of the numbers in the tuple is ≥ 9, then we can subtract 9 from it, and add 1 to the remaining numbers in the tuple. Call thus one operation. If for $A, B \in S$ we can get from A to B in finitely many operations, then denote $A \rightarrow B$.
(1) Find the smallest integer k, such that if the minimum number in $A, B \in S$ respectively are both $\geq k$, then $A \rightarrow B$ implies $B \rightarrow A$.
(2) For the k obtained in (1), how many tuples can we pick from S, such that any two of these tuples A, B that are distinct, $A \nrightarrow B$.

3 Let n be a given even number, $a_{1}, a_{2}, \cdots, a_{n}$ be non-negative real numbers such that $a_{1}+a_{2}+$ $\cdots+a_{n}=1$. Find the maximum possible value of $\sum_{1 \leq i<j \leq n} \min \left\{(i-j)^{2},(n+i-j)^{2}\right\} a_{i} a_{j}$.

- \quad Test 2 Day 2

4 Does there exist a finite set A of positive integers of at least two elements and an infinite set B of positive integers, such that any two distinct elements in $A+B$ are coprime, and for any coprime positive integers m, n, there exists an element x in $A+B$ satisfying $x \equiv n(\bmod m)$?
Here $A+B=\{a+b \mid a \in A, b \in B\}$.
5 Let M be the midpoint of $B C$ of triangle $A B C$. The circle with diameter $B C, \omega$, meets $A B, A C$ at D, E respectively. P lies inside $\triangle A B C$ such that $\angle P B A=\angle P A C, \angle P C A=\angle P A B$, and $2 P M \cdot D E=B C^{2}$. Point X lies outside ω such that $X M \| A P$, and $\frac{X B}{X C}=\frac{A B}{A C}$. Prove that $\angle B X C+\angle B A C=90^{\circ}$.

6 Given coprime positive integers $p, q>1$, call all positive integers that cannot be written as $p x+q y$ (where x, y are non-negative integers) bad, and define $S(p, q)$ to be the sum of all bad numbers raised to the power of 2019. Prove that there exists a positive integer n, such that for any p, q as described, $(p-1)(q-1)$ divides $n S(p, q)$.

- \quad Test 3 Day 1

AoPS Community

1 Given complex numbers x, y, z, with $|x|^{2}+|y|^{2}+|z|^{2}=1$. Prove that:

$$
\left|x^{3}+y^{3}+z^{3}-3 x y z\right| \leq 1
$$

2 Let S be a set of positive integers, such that $n \in S$ if and only if

$$
\sum_{d \mid n, d<n, d \in S} d \leq n
$$

Find all positive integers $n=2^{k} \cdot p$ where k is a non-negative integer and p is an odd prime, such that

$$
\sum_{d \mid n, d<n, d \in S} d=n
$$

3 Does there exist a bijection $f: \mathbb{N}^{+} \rightarrow \mathbb{N}^{+}$, such that there exist a positive integer k, and it's possible to have each positive integer colored by one of k chosen colors, such that for any $x \neq y, f(x)+y$ and $f(y)+x$ are not the same color?

- \quad Test 3 Day 2

4 Find all functions $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, such that

1) $f(0, x)$ is non-decreasing ;
2) for any $x, y \in \mathbb{R}, f(x, y)=f(y, x)$;
3) for any $x, y, z \in \mathbb{R},(f(x, y)-f(y, z))(f(y, z)-f(z, x))(f(z, x)-f(x, y))=0$;
4) for any $x, y, a \in \mathbb{R}, f(x+a, y+a)=f(x, y)+a$.
$5 \quad$ In $\triangle A B C, A D \perp B C$ at $D . E, F$ lie on line $A B$, such that $B D=B E=B F$. Let I, J be the incenter and A-excenter. Prove that there exist two points P, Q on the circumcircle of $\triangle A B C$, such that $P B=Q C$, and $\triangle P E I \sim \triangle Q F J$.

6 Given positive integers $d \geq 3, r>2$ and l, with $2 d \leq l<r d$. Every vertice of the graph $G(V, E)$ is assigned to a positive integer in $\{1,2, \cdots, l\}$, such that for any two consecutive vertices in the graph, the integers they are assigned to, respectively, have difference no less than d, and no more than $l-d$.
A proper coloring of the graph is a coloring of the vertices, such that any two consecutive vertices are not the same color. It's given that there exist a proper subset A of V, such that for G^{\prime} s any proper coloring with $r-1$ colors, and for an arbitrary color C, either all numbers in color C appear in A, or none of the numbers in color C appear in A.
Show that G has a proper coloring within $r-1$ colors.

- \quad Test 4 Day 1

1 Cyclic quadrilateral $A B C D$ has circumcircle (O). Points M and N are the midpoints of $B C$ and $C D$, and E and F lie on $A B$ and $A D$ respectively such that $E F$ passes through O and $E O=O F$. Let $E N$ meet $F M$ at P. Denote S as the circumcenter of $\triangle P E F$. Line $P O$ intersects $A D$ and $B A$ at Q and R respectively. Suppose $O S P C$ is a parallelogram. Prove that $A Q=A R$.

2 A graph $G(V, E)$ is triangle-free, but adding any edges to the graph will form a triangle. It's given that $|V|=2019,|E|>2018$, find the minimum of $|E|$.

360 points lie on the plane, such that no three points are collinear. Prove that one can divide the points into 20 groups, with 3 points in each group, such that the triangles (20 in total) consist of three points in a group have a non-empty intersection.

- \quad Test 4 Day 2

4 Prove that there exist a subset A of $\left\{1,2, \cdots, 2^{n}\right\}$ with n elements, such that for any two different non-empty subset of A, the sum of elements of one subset doesn't divide another's.

5 Find all integer n such that the following property holds: for any positive real numbers a, b, c, x, y, z, with $\max (a, b, c, x, y, z)=a, a+b+c=x+y+z$ and $a b c=x y z$, the inequality

$$
a^{n}+b^{n}+c^{n} \geq x^{n}+y^{n}+z^{n}
$$

holds.
6 Given positive integer n, k such that $2 \leq n<2^{k}$. Prove that there exist a subset A of $\{0,1, \cdots, n\}$ such that for any $x \neq y \in A,\binom{y}{x}$ is even, and

$$
|A| \geq \frac{\binom{k}{\left\lfloor\frac{k}{2}\right\rfloor}}{2^{k}} \cdot(n+1)
$$

