Art of Problem Solving

AoPS Community

2019 Sharygin Geometry Olympiad

Sharygin Geometry Olympiad 2019

www.artofproblemsolving.com/community/c848848
by Snakes, AlastorMoody, Vrangr, TheDarkPrince, BigSams, MathPassionForever, Pluto1708, Physicsknight, CantonMathGuy, parmenides51

- \quad First (Correspondence) Round

1 Let $A A_{1}, C C_{1}$ be the altitudes of $\triangle A B C$, and P be an arbitrary point of side $B C$. Point Q on the line $A B$ is such that $Q P=P C_{1}$, and point R on the line $A C$ is such that $R P=C P$. Prove that $Q A_{1} R A$ is a cyclic quadrilateral.

2 The circle ω_{1} passes through the center O of the circle ω_{2} and meets it at points A and B. The circle ω_{3} centered at A with radius $A B$ meets ω_{1} and ω_{2} at points C and D (distinct from B). Prove that C, O, D are collinear.

3 The rectangle $A B C D$ lies inside a circle. The rays $B A$ and $D A$ meet this circle at points A_{1} and A_{2}. Let A_{0} be the midpoint of $A_{1} A_{2}$. Points B_{0}, C_{0}, D_{0} are defined similarly. Prove that $A_{0} C_{0}=B_{0} D_{0}$.

4 The side $A B$ of $\triangle A B C$ touches the corresponding excircle at point T. Let J be the center of the excircle inscribed into $\angle A$, and M be the midpoint of $A J$. Prove that $M T=M C$.
$5 \quad$ Let A, B, C and D be four points in general position, and ω be a circle passing through B and C. A point P moves along ω. Let Q be the common point of circles $\odot(A B P)$ and $\odot(P C D)$ distinct from P. Find the locus of points Q.

6 Two quadrilaterals $A B C D$ and $A_{1} B_{1} C_{1} D_{1}$ are mutually symmetric with respect to the point P. It is known that $A_{1} B C D, A B_{1} C D$ and $A B C_{1} D$ are cyclic quadrilaterals. Prove that the quadrilateral $A B C D_{1}$ is also cyclic

7 Let $A H_{A}, B H_{B}, C H_{C}$ be the altitudes of the acute-angled $\triangle A B C$. Let X be an arbitrary point of segment $C H_{C}$, and P be the common point of circles with diameters $H_{C} X$ and BC , distinct from H_{C}. The lines $C P$ and $A H_{A}$ meet at point Q, and the lines $X P$ and $A B$ meet at point R. Prove that A, P, Q, R, H_{B} are concyclic.

8 The circle ω_{1} passes through the vertex A of the parallelogram $A B C D$ and touches the rays $C B, C D$. The circle ω_{2} touches the rays $A B, A D$ and touches ω_{1} externally at point T. Prove that T lies on the diagonal $A C$

9 Let A_{M} be the midpoint of side $B C$ of an acute-angled $\triangle A B C$, and A_{H} be the foot of the altitude to this side. Points $B_{M}, B_{H}, C_{M}, C_{H}$ are defined similarly. Prove that one of the ratios
$A_{M} A_{H}: A_{H} A, B_{M} B_{H}: B_{H} B, C_{M} C_{H}: C_{H} C$ is equal to the sum of two remaining ratios
10 Let N be the midpoint of arc $A B C$ of the circumcircle of $\triangle A B C$, and $N P, N T$ be the tangents to the incircle of this triangle. The lines $B P$ and $B T$ meet the circumcircle for the second time at points P_{1} and T_{1} respectively. Prove that $P P_{1}=T T_{1}$.

11 Morteza marks six points in the plane. He then calculates and writes down the area of every triangle with vertices in these points (20 numbers). Is it possible that all of these numbers are integers, and that they add up to 2019 ?

12 Let $A_{1} A_{2} A_{3}$ be an acute-angled triangle inscribed into a unit circle centered at O. The cevians from A_{i} passing through O meet the opposite sides at points $B_{i}(i=1,2,3)$ respectively.

- Find the minimal possible length of the longest of three segments $B_{i} O$.
- Find the maximal possible length of the shortest of three segments $B_{i} O$.

13 Let $A B C$ be an acute-angled triangle with altitude $A T=h$. The line passing through its circumcenter O and incenter I meets the sides $A B$ and $A C$ at points F and N, respectively. It is known that $B F N C$ is a cyclic quadrilateral. Find the sum of the distances from the orthocenter of $A B C$ to its vertices.

14 Let the side $A C$ of triangle $A B C$ touch the incircle and the corresponding excircle at points K and L respectively. Let P be the projection of the incenter onto the perpendicular bisector of $A C$. It is known that the tangents to the circumcircle of triangle $B K L$ at K and L meet on the circumcircle of $A B C$. Prove that the lines $A B$ and $B C$ touch the circumcircle of triangle $P K L$.

15 The incircle ω of triangle $A B C$ touches the sides $B C, C A$ and $A B$ at points D, E and F respectively. The perpendicular from E to $D F$ meets $B C$ at point X, and the perpendicular from F to $D E$ meets $B C$ at point Y. The segment $A D$ meets ω for the second time at point Z. Prove that the circumcircle of the triangle $X Y Z$ touches ω.

16 Let $A H_{1}$ and $B H_{2}$ be the altitudes of triangle $A B C$. Let the tangent to the circumcircle of $A B C$ at A meet $B C$ at point S_{1}, and the tangent at B meet $A C$ at point S_{2}. Let T_{1} and T_{2} be the midpoints of $A S_{1}$ and $B S_{2}$ respectively. Prove that $T_{1} T_{2}, A B$ and $H_{1} H_{2}$ concur.

17 Three circles $\omega_{1}, \omega_{2}, \omega_{3}$ are given. Let A_{0} and A_{1} be the common points of ω_{1} and ω_{2}, B_{0} and B_{1} be the common points of ω_{2} and ω_{3}, C_{0} and C_{1} be the common points of ω_{3} and ω_{1}. Let $O_{i, j, k}$ be the circumcenter of triangle $A_{i} B_{j} C_{k}$. Prove that the four lines of the form $O_{i j k} O_{1-i, 1-j, 1-k}$ are concurrent or parallel.

18 A quadrilateral $A B C D$ without parallel sidelines is circumscribed around a circle centered at I. Let K, L, M and N be the midpoints of $A B, B C, C D$ and $D A$ respectively. It is known that $A B \cdot C D=4 I K \cdot I M$. Prove that $B C \cdot A D=4 I L \cdot I N$.

19 Let $A L_{a}, B L_{b}, C L_{c}$ be the bisecors of triangle $A B C$. The tangents to the circumcircle of $A B C$ at B and C meet at point K_{a}, points K_{b}, K_{c} are defined similarly. Prove that the lines $K_{a} L_{a}$, $K_{b} L_{b}$ and $K_{c} L_{c}$ concur.

20 Let O be the circumcenter of triangle ABC, H be its orthocenter, and M be the midpoint of $A B$. The line $M H$ meets the line passing through O and parallel to $A B$ at point K lying on the circumcircle of $A B C$. Let P be the projection of K onto $A C$. Prove that $P H \| B C$.

21 An ellipse Γ and its chord $A B$ are given. Find the locus of orthocenters of triangles $A B C$ inscribed into Γ.

22 Let $A A_{0}$ be the altitude of the isosceles triangle $A B C(A B=A C)$. A circle γ centered at the midpoint of $A A_{0}$ touches $A B$ and $A C$. Let X be an arbitrary point of line $B C$. Prove that the tangents from X to γ cut congruent segments on lines $A B$ and $A C$

23 In the plane, let a, b be two closed broken lines (possibly self-intersecting), and K, L, M, N be four points. The vertices of a, b and the points $K L, M, N$ are in general position (i.e. no three of these points are collinear, and no three segments between them concur at an interior point). Each of segments $K L$ and $M N$ meets a at an even number of points, and each of segments $L M$ and NK meets a at an odd number of points. Conversely, each of segments $K L$ and $M N$ meets b at an odd number of points, and each of segments $L M$ and $N K$ meets b at an even number of points. Prove that a and b intersect.

24 Two unit cubes have a common center. Is it always possible to number the vertices of each cube from 1 to 8 so that the distance between each pair of identically numbered vertices would be at most $4 / 5$? What about at most $13 / 16$?

- \quad Final Round
- \quad Grade 8

1 A trapezoid with bases $A B$ and $C D$ is inscribed into a circle centered at O. Let $A P$ and $A Q$ be the tangents from A to the circumcircle of triangle $C D O$. Prove that the circumcircle of triangle $A P Q$ passes through the midpoint of $A B$.

2 A point M inside triangle $A B C$ is such that $A M=A B / 2$ and $C M=B C / 2$. Points C_{0} and A_{0} lying on $A B$ and $C B$ respectively are such that $B C_{0}: A C_{0}=B A_{0}: C A_{0}=3$. Prove that the distances from M to C_{0} and A_{0} are equal.

3 Construct a regular triangle using a plywood square. (You can draw a line through pairs of points lying on the distance less than the side of the square, construct a perpendicular from a point to the
line the distance between them does not exceed the side of the square, and measure segments on the constructed lines equal to the side or to the diagonal of the square)

4 Let O, H be the orthocenter and circumcenter of of an acute-angled triangke $A B C$ with $A B<$ $A C$. Let K be the midpoint of $A H$. The line through K perpendicular to $O K$ meet $A B$ and the tangent to the circumcircle at A at X and Y respectively. Prove that $\angle X O Y=\angle A O B$

5 Grade8 P5 of Sharygin 2019 Finals
6 A point H lies on the side $A B$ of regular polygon $A B C D E$. A circle with center H and radius $H E$ meets the segments $D E$ and $C D$ at points G and F respectively. It is known that $D G=A H$. Prove that $C F=A H$.

7 Let points M and N lie on sides $A B$ and $B C$ of triangle $A B C$ in such a way that $M N \| A C$. Points M^{\prime} and N^{\prime} are the reflections of M and N about $B C$ and $A B$ respectively. Let $M^{\prime} A$ meet $B C$ at X, and let $N^{\prime} C$ meet $A B$ at Y. Prove that A, C, X, Y are concyclic.

8 What is the least positive integer k such that, in every convex 1001-gon, the sum of any k diagonals is greater than or equal to the sum of the remaining diagonals?

- \quad Grade 9

1 A triangle $O A B$ with $\angle A=90^{\circ}$ lies inside another triangle with vertex O. The altitude of $O A B$ from A until it meets the side of angle O at M. The distances from M and B to the second side of angle O are 2 and 1 respectively. Find the length of $O A$.

2 Let P be a point on the circumcircle of triangle $A B C$. Let A_{1} be the reflection of the orthocenter of triangle $P B C$ about the reflection of the perpendicular bisector of $B C$. Points B_{1} and C_{1} are defined similarly. Prove that A_{1}, B_{1}, C_{1} are collinear.

3 Let $A B C D$ be a cyclic quadrilateral such that $A D=B D=A C$. A point P moves along the circumcircle ω of triangle $A B C D$. The lined $A P$ and $D P$ meet the lines $C D$ and $A B$ at points E and F respectively. The lines $B E$ and $C F$ meet point Q. Find the locus of Q.

4 A ship tries to land in the fog. The crew does not know the direction to the land. They see a lighthouse on a little island, and they understand that the distance to the lighthouse does not exceed 10 km (the exact distance is not known). The distance from the lighthouse to the land equals 10 km . The lighthouse is surrounded by reefs, hence the ship cannot approach it. Can the ship land having sailed the distance not greater than 75 km ?
(The waterside is a straight line, the trajectory has to be given before the beginning of the motion, after that the autopilot navigates the ship.)

AoPS Community

2019 Sharygin Geometry Olympiad

5 Let R be the circumradius of a circumscribed quadrilateral $A B C D$. Let h_{1} and h_{2} be the altitudes from A to $B C$ and $C D$ respectively. Similarly h_{3} and h_{4} are the altitudes from C to $A B$ and $A D$. Prove that

$$
\frac{h_{1}+h_{2}-2 R}{h_{1} h_{2}}=\frac{h_{3}+h_{4}-2 R}{h_{3} h_{4}}
$$

6 A non-convex polygon has the property that every three consecutive its vertices from a rightangled triangle. Is it true that this polygon has always an angle equal to 90° or to 270° ?
$7 \quad$ Let the incircle ω of $\triangle A B C$ touch $A C$ and $A B$ at points E and F respectively. Points X, Y of ω are such that $\angle B X C=\angle B Y C=90^{\circ}$. Prove that $E F$ and $X Y$ meet on the medial line of $A B C$.

8 A hexagon $A_{1} A_{2} A_{3} A_{4} A_{5} A_{6}$ has no four concyclic vertices, and its diagonals $A_{1} A_{4}, A_{2} A_{5}$ and $A_{3} A_{6}$ concur. Let l_{i} be the radical axis of circles $A_{i} A_{i+1} A_{i-2}$ and $A_{i} A_{i-1} A_{i+2}$ (the points A_{i} and A_{i+6} coincide). Prove that $l_{i}, i=1, \cdots, 6$, concur.

- \quad Grade 10

1 Given a triangle $A B C$ with $\angle A=45^{\circ}$. Let A^{\prime} be the antipode of A in the circumcircle of $A B C$. Points E and F on segments $A B$ and $A C$ respectively are such that $A^{\prime} B=B E, A^{\prime} C=C F$. Let K be the second intersection of circumcircles of triangles $A E F$ and $A B C$. Prove that $E F$ bisects $A^{\prime} K$.

2 Let A_{1}, B_{1}, C_{1} be the midpoints of sides $B C, A C$ and $A B$ of triangle $A B C, A K$ be the altitude from A, and L be the tangency point of the incircle γ with $B C$. Let the circumcircles of triangles $L K B_{1}$ and $A_{1} L C_{1}$ meet $B_{1} C_{1}$ for the second time at points X and Y respectively, and γ meet this line at points Z and T. Prove that $X Z=Y T$.

3 Let P and Q be isogonal conjugates inside triangle $A B C$. Let ω be the circumcircle of $A B C$. Let A_{1} be a point on $\operatorname{arc} B C$ of ω satisfying $\angle B A_{1} P=\angle C A_{1} Q$. Points B_{1} and C_{1} are defined similarly. Prove that $A A_{1}, B B_{1}, C C_{1}$ are concurrent.

4 Prove that the sum of two nagelians is greater than the semiperimeter of a triangle. (The nagelian is the segment between the vertex of a triangle and the tangency point of the opposite side with the correspondent excircle.)

5 Let $A A_{1}, B B_{1}, C C_{1}$ be the altitudes of triangle $A B C$, and $A 0, C 0$ be the common points of the circumcircle of triangle $A_{1} B C_{1}$ with the lines $A_{1} B_{1}$ and $C_{1} B_{1}$ respectively. Prove that $A A_{0}$ and $C C_{0}$ meet on the median of ABC or are parallel to it

6 Let $A K$ and $A T$ be the bisector and the median of an acute-angled triangle $A B C$ with $A C>$ $A B$. The line $A T$ meets the circumcircle of $A B C$ at point D. Point F is the reflection of K
about T. If the angles of $A B C$ are known, find the value of angle $F D A$.
$7 \quad$ Let P be an arbitrary point on side $B C$ of triangle $A B C$. Let K be the incenter of triangle $P A B$. Let the incircle of triangle $P A C$ touch $B C$ at F. Point G on $C K$ is such that $F G / / P K$. Find the locus of G.

8 Several points and planes are given in the space. It is known that for any two of given points there exactly two planes containing them, and each given plane contains at least four of given points. Is it true that all given points are collinear?

