AoPS Community

Kazakhstan National Olympiad 2019

www.artofproblemsolving.com/community/c853055
by CinarArslan, rightways, qwert159

- [b] Day 1

1 Prove for any positives a, b, c the inequality

$$
\sqrt[3]{\frac{a}{b}}+\sqrt[5]{\frac{b}{c}}+\sqrt[7]{\frac{c}{a}}>\frac{5}{2}
$$

2 The set consists of a finite number of points on the plane. The distance between any two points from is at least $\sqrt{2}$. It is known that a regular triangle with side lenght 3 cut out of paper can cover all points of. What is the greatest number of points that can consist of?

3 Let p be a prime number of the form $4 k+1$ and $\frac{m}{n}$ is an irreducible fraction such that

$$
\sum_{a=2}^{p-2} \frac{1}{a^{(p-1) / 2}+a^{(p+1) / 2}}=\frac{m}{n}
$$

Prove that $p \mid m+n$.
(Fixed, thanks Pavel)

- [b] Day 2

4 Find all positive integers $n, k, a_{1}, a_{2}, \ldots, a_{k}$ so that $n^{k+1}+1$ is divisible by $\left(n a_{1}+1\right)\left(n a_{2}+\right.$ 1)...($\left.n a_{k}+1\right)$

5 Given a checkered rectangle of size n m . Is it always possible to mark 3 or 4 nodes of a rectangle so that at least one of the marked nodes lay on each straight line containing the side of the rectangle, and the non-self-intersecting polygon with vertices at these nodes has an area equal to

$$
\frac{1}{2} \min \left(\operatorname{gcd}(n, m), \frac{n+m}{\operatorname{gcd}(n, m)}\right)
$$

?

6 The tangent line l to the circumcircle of an acute triangle $A B C$ intersects the lines $A B, B C$, and $C A$ at points C^{\prime}, A^{\prime} and B^{\prime}, respectively. Let H be the orthocenter of a triangle $A B C$. On the straight lines $\mathrm{A}^{\prime} \mathrm{H}, \mathrm{BH}$ and $\mathrm{C}^{\prime} \mathrm{H}$, respectively, points A_{1}, B_{1} and C_{1} (other than H) are marked such that $A H=A A_{1}, B H=B B_{1}$ and $C H=C C_{1}$. Prove that the circumcircles of triangles $A B C$ and $A_{1} B_{1} C_{1}$ are tangent.

