AoPS Community

Regional Competition For Advanced Students 2015

www.artofproblemsolving.com/community/c854086
by RockmanEX3

1 Determine all triples (a, b, c) of positive integers satisfying the conditions

$$
\begin{gathered}
\operatorname{gcd}(a, 20)=b \\
\operatorname{gcd}(b, 15)=c \\
\operatorname{gcd}(a, c)=5
\end{gathered}
$$

(Richard Henner)

2 Let x, y, and z be positive real numbers with $x+y+z=3$. Prove that at least one of the three numbers

$$
\begin{aligned}
& x(x+y-z) \\
& y(y+z-x) \\
& z(z+x-y)
\end{aligned}
$$

is less or equal 1.
(Karl Czakler)
3 Let $n \geq 3$ be a fixed integer. The numbers $1,2,3, \cdots, n$ are written on a board. In every move one chooses two numbers and replaces them by their arithmetic mean. This is done until only a single number remains on the board.

Determine the least integer that can be reached at the end by an appropriate sequence of moves.
(Theresia Eisenklbl)
4 Let $A B C$ be an isosceles triangle with $A C=B C$ and $\angle A C B<60^{\circ}$. We denote the incenter and circumcenter by I and O, respectively. The circumcircle of triangle $B I O$ intersects the leg $B C$ also at point $D \neq B$.
(a) Prove that the lines $A C$ and $D I$ are parallel.
(b) Prove that the lines $O D$ and $I B$ are mutually perpendicular.
(Walther Janous)

