

AoPS Community

2015 Federal Competition For Advanced Students, P2

Federal Competition For Advanced Students, Part 2 2015

www.artofproblemsolving.com/community/c854104 by Snakes, RockmanEX3

-	Day 1
1	Let $f : \mathbb{Z}_{>0} \to \mathbb{Z}$ be a function with the following properties:
	(i) $f(1) = 0$ (ii) $f(p) = 1$ for all prime numbers p (iii) $f(xy) = y \cdot f(x) + x \cdot f(y)$ for all x, y in $\mathbb{Z}_{>0}$
	Determine the smallest integer $n \ge 2015$ that satisfies $f(n) = n$.
	(Gerhard J. Woeginger)
2	We are given a triangle ABC . Let M be the mid-point of its side AB .
	Let P be an interior point of the triangle. We let Q denote the point symmetric to P with respect to M .
	Furthermore, let D and E be the common points of AP and BP with sides BC and AC , respectively.
	Prove that points A, B, D, and E lie on a common circle if and only if $\angle ACP = \angle QCB$ holds.
	(Karl Czakler)
3	We consider the following operation applied to a positive integer. The integer is represented in an arbitrary base $b \ge 2$, in which it has exactly two digits and in which both digits are different from 0. Then the two digits are swapped and the result in base b is the new number.
	Is it possible to transform every number >10 to a number ≤10 with a series of such operations?
	(Theresia Eisenklbl)
-	Day 2
4	Let x, y, z be positive real numbers with $x + y + z \ge 3$. Prove that
	$\frac{1}{x+y+z^2} + \frac{1}{y+z+x^2} + \frac{1}{z+x+y^2} \le 1$
	When does equality hold?
	(Karl Czakler)

AoPS Community 2015 Feder

2015 Federal Competition For Advanced Students, P2

- **5** Let I be the incenter of triangle *ABC* and let *k* be a circle through the points *A* and *B*. The circle intersects
 - * the line AI in points A and P
 - * the line BI in points B and Q
 - * the line AC in points A and R
 - * the line BC in points B and S

with none of the points A, B, P, Q, R and S coinciding and such that R and S are interior points of the line segments AC and BC, respectively.

Prove that the lines *PS*, *QR*, and *CI* meet in a single point.

(Stephan Wagner)

6 Max has 2015 jars labeled with the numbers 1 to 2015 and an unlimited supply of coins.

Consider the following starting configurations:

(a) All jars are empty.

(b) Jar 1 contains 1 coin, jar 2 contains 2 coins, and so on, up to jar 2015 which contains 2015 coins.

(c) Jar 1 contains 2015 coins, jar 2 contains 2014 coins, and so on, up to jar 2015 which contains 1 coin.

Now Max selects in each step a number n from 1 to 2015 and adds n to each jar [i]except to the jar n[/i].

Determine for each starting configuration in (a), (b), (c), if Max can use a finite, strictly positive number of steps to obtain an equal number of coins in each jar.

(Birgit Vera Schmidt)

AoPS Online 🐼 AoPS Academy 🐼 AoPS 🗱