AoPS Community

Tajikistan Team Selection Test 2014
www.artofproblemsolving.com/community/c854163
by umedkarimov

1 Given the polynomial $p(x)=x^{2}+x-70$, do there exist integers $0<m<n$, so that $p(m)$ is divisible by n and $p(m+1)$ is divisible by $n+1$?

Proposed by Nairy Sedrakyan
2 Let M be an interior point of triangle $A B C$. Let the line $A M$ intersect the circumcircle of the triangle $M B C$ for the second time at point D, the line $B M$ intersect the circumcircle of the triangle $M C A$ for the second time at point E, and the line $C M$ intersect the circumcircle of the triangle $M A B$ for the second time at point F. Prove that $\frac{A D}{M D}+\frac{B E}{M E}+\frac{C F}{M F} \geq \frac{9}{2}$.
Proposed by Nairy Sedrakyan
3 Let a, b, c be side length of a triangle. Prove the inequality

$$
\sqrt{a^{2}+a b+b^{2}}+\sqrt{b^{2}+b c+c^{2}}+\sqrt{c^{2}+c a+a^{2}} \leq \sqrt{5 a^{2}+5 b^{2}+5 c^{2}+4 a b+4 b c+4 c a} .
$$

4 In a convex hexagon $A B C D E F$ the diagonals $A D, B E, C F$ intersect at a point M. It is known that the triangles $A B M, B C M, C D M, D E M, E F M, F A M$ are acute. It is also known that the quadrilaterals $A B D E, B C E F, C D F A$ have the same area. Prove that the circumcenters of triangles $A B M, B C M, C D M, D E M, E F M, F A M$ are concyclic.

Proposed by Nairy Sedrakyan
5 There are 12 delegates in a mathematical conference. It is known that every two delegates share a common friend. Prove that there is a delegate who has at least five friends in that conference.

Proposed by Nairy Sedrakyan

