AoPS Community

Belarusian National Olympiad 2018

www.artofproblemsolving.com/community/c854334
by Vlados021, Daniil02, NikitosKh

Category C Category C

9.1 Prove that the set of all divisors of a positive integer which is not a perfect square can be divided into pairs so that in each pair one number is divisible by another.
9.2 For every integer $n \geqslant 2$ prove the inequality

$$
\frac{1}{2!}+\frac{2}{3!}+\ldots+\frac{2^{n-2}}{n!} \leqslant \frac{3}{2}
$$

where $k!=1 \cdot 2 \cdot \ldots \cdot k$.
9.3 The bisector of angle $C A B$ of triangle $A B C$ intersects the side $C B$ at L. The point D is the foot of the perpendicular from C to $A L$ and the point E is the foot of perpendicular from L to $A B$. The lines $C B$ and $D E$ meet at F.
Prove that $A F$ is an altitude of triangle $A B C$.
9.4 Three $n \times n$ squares form the figure Φ on the checkered plane as shown on the picture. (Neighboring squares are tpuching along the segment of length $n-1$.)
Find all $n>1$ for which the figure Φ can be covered with tiles 1×3 and 3×1 without overlapping.https :
//pp.userapi.com/c850332/v850332712/115884/DKxvALE-sAc.jpg
9.5 The quadrilateral $A B C D$ is inscribed in the parabola $y=x^{2}$. It is known that angle $B A D=90$, the dioganal $A C$ is parallel to the axis $O x$ and $A C$ is the bisector of the angle BAD.
Find the area of the quadrilateral $A B C D$ if the length of the dioganal $B D$ is equal to p.
9.6 For all positive integers m and n prove the inequality

$$
\left|n \sqrt{n^{2}+1}-m\right| \geqslant \sqrt{2}-1
$$

9.7 A point O is choosen inside a triangle $A B C$ so that the length of segments $O A, O B$ and $O C$ are equal to 15,12 and 20 , respectively. It is known that the feet of the perpendiculars from O to the sides of the triangle $A B C$ are the vertices of an equilateral triangle.
Find the value of the angle $B A C$.
9.8 A positive integer n is fixed. Numbers 0 and 1 are placed in all cells (exactly one number in any cell) of a $k \times n$ table (k is a number of the rows in the table, n is the number of the columns
in it). We call a table nice if the following property is fulfilled: for any partition of the set of the rows of the table into two nonempty subsets $R 1$ and $R 2$ there exists a nonempty set S of the columns such that on the intersection of any row from $R 1$ with the columns from S there are even number of $1^{\prime} s$ while on the intersection of any row from $R 2$ with the columns from S there are odd number of $1^{\prime} s$.
Find the greatest number of k such that there exists at least one nice $k \times n$ table.

Category B Category B

10.1 The extension of the median $A M$ of the triangle $A B C$ intersects its circumcircle at D. The circumcircle of triangle $C M D$ intersects the line $A C$ at C and E. The circumcircle of triangle $A M E$ intersects the line $A B$ at A and F. Prove that $C F$ is the altitude of triangle $A B C$.
10.2 Determine, whether there exist a function f defined on the set of all positive real numbers and taking positive values such that $f(x+y) \geqslant y f(x)+f(f(x))$ for all positive \mathbf{x} and \mathbf{y} ?
10.3 For a fixed integer $n \geqslant 2$ consider the sequence $a_{k}=\operatorname{Icm}(k, k+1, \ldots, k+(n-1))$. Find all n for which the sequence a_{k} increases starting from some number.
10.4 Some cells of a checkered plane are marked so that figure A formed by marked cells satisfies the following condition:1) any cell of the figure A has exactly two adjacent cells of A; and 2) the figure A can be divided into isosceles trapezoids of area 2 with vertices at the grid nodes (and acute angles of trapezoids are equal to 45). Prove that the number of marked cells is divisible by 8 .
10.5 Find all positive integers n such that equation

$$
3 a^{2}-b^{2}=2018^{n}
$$

has a solution in integers a and b.
10.6 The vertices of the convex quadrilateral $A B C D$ lie on the parabola $y=x^{2}$. It is known that $A B C D$ is cyclic and $A C$ is a diameter of its circumcircle. Let M and N be the midpoints of the diagonals of $A C$ and $B D$ respectively. Find the length of the projection of the segment $M N$ on the axis $O y$.
10.7 The square $A_{1} B_{1} C_{1} D_{1}$ is inscribed in the right triangle $A B C$ (with $C=90$) so that points A_{1}, B_{1} lie on the legs $C B$ and $C A$ respectively, and points C_{1}, D_{1} lie on the hypotenuse $A B$. The circumcircle of triangles $B_{1} A_{1} C$ an $A C_{1} B_{1}$ intersect at B_{1} and Y. Prove that the lines $A_{1} X$ and $B_{1} Y$ meet on the hypotenuse $A B$.
10.8 The vertices of the regular n-gon and its center are marked. Two players play the following game: they, in turn, select a vertex and connect it by a segment to either the adjacent vertex
or the center. The winner I a player if after his maveit is possible to get any marked point from any other moving along the segments. For each $n>2$ determine who has a winning strategy.

Category A Category A

11.1 Find all real numbers a for which there exists a function f defined on the set of all real numbers which takes as its values all real numbers exactly once and satisfies the equality

$$
f(f(x))=x^{2} f(x)+a x^{2}
$$

for all real x.
11.2 The altitudes $A A_{1}, B B_{1}$ and $C C_{1}$ are drawn in the acute triangle $A B C$. The bisector of the angle $A A_{1} C$ intersects the segments $C C_{1}$ and $C A$ at E and D respectively. The bisector of the angle $A A_{1} B$ intersects the segments $B B_{1}$ and $B A$ at F and G respectively. The circumcircles of the triangles $F A_{1} D$ and $E A_{1} G$ intersect at A_{1} and X.
Prove that $\angle B X C=90^{\circ}$.
11.3 For all pairs (m, n) of positive integers that have the same number k of divisors we define the operation \circ. Write all their divisors in an ascending order. $1=m_{1}<\ldots<m_{k}=m$, $1=n_{1}<\ldots<n_{k}=n$ and set

$$
m \circ n=m_{1} \cdot n_{1}+\ldots+m_{k} \cdot n_{k}
$$

Find all pairs of numbers $(m, n), m \geqslant n$, such that $m \circ n=497$.
11.4 A checkered polygon A is drawn on the checkered plane. We call a cell of A internal if all 8 of its adjacent cells belong to A. All other (non-internal) cells of A we call boundary. It is known that 1) each boundary cell has exactly two common sides with no boundary cells; and 2) the union of all boundary cells can be divided into isosceles trapezoid of area 2 with vertices at the grid nodes (and acute angles of the trapezoids are equal 45°).
Prove that the area of the polygon A is congruent to 1 modulo 4 .
11.5 The circle S_{1} intersects the hyperbola $y=\frac{1}{x}$ at four points A, B, C, and D, and the other circle S_{2} intersects the same hyperbola at four points A, B, F, and G. It's known that the radii of circles S_{1} and S_{2} are equal.
Prove that the points C, D, F, and G are the vertices of the parallelogram.
11.6 The point X is marked inside the triangle $A B C$. The circumcircles of the triangles $A X B$ and $A X C$ intersect the side $B C$ again at D and E respectively. The line $D X$ intersects the side $A C$ at K, and the line $E X$ intersects the side $A B$ at L.
Prove that $L K \| B C$.
11.7 Consider the expression $M(n, m)=\left|n \sqrt{n^{2}+a}-b m\right|$, where n and m are arbitrary positive integers and the numbers a and b are fixed, moreover a is an odd positive integer and b is a rational number with an odd denominator of its representation as an irreducible fraction.
Prove that there is
a) no more than a finite number of pairs (n, m) for which $M(n, m)=0$;
b) a positive constant C such that the inequality $M(n, m) \geqslant 0$ holds for all pairs (n, m) with $M(n, m) \neq 0$.
11.8 The vertices of the regular n-gon are marked. Two players play the following game: they, in turn, select a vertex and connect it by a segment to either the adjacent vertex or the center of the n-gon. The winner is a player if after his move it is possible to get any vertex from any other vertex moving along segments.
For each integer $n \geqslant 3$ determine who has a winning strategy.

