AoPS Community

IberoAmerican 2018

www.artofproblemsolving.com/community/c854364
by Snakes, juckter

- Day 1

1 For each integer $n \geq 2$, find all integer solutions of the following system of equations:

$$
\begin{gathered}
x_{1}=\left(x_{2}+x_{3}+x_{4}+\ldots+x_{n}\right)^{2018} \\
x_{2}=\left(x_{1}+x_{3}+x_{4}+\ldots+x_{n}\right)^{2018} \\
\vdots \\
x_{n}=\left(x_{1}+x_{2}+x_{3}+\ldots+x_{n-1}\right)^{2018}
\end{gathered}
$$

2 Let $A B C$ be a triangle such that $\angle B A C=90^{\circ}$ and $A B=A C$. Let M be the midpoint of $B C$. A point $D \neq A$ is chosen on the semicircle with diameter $B C$ that contains A. The circumcircle of triangle $D A M$ cuts lines $D B$ and $D C$ at E and F respectively. Show that $B E=C F$.

3 In a plane we have n lines, no two of which are parallel or perpendicular, and no three of which are concurrent. A cartesian system of coordinates is chosen for the plane with one of the lines as the x-axis. A point P is located at the origin of the coordinate system and starts moving along the positive x-axis with constant velocity. Whenever P reaches the intersection of two lines, it continues along the line it just reached in the direction that increases its x-coordinate. Show that it is possible to choose the system of coordinates in such a way that P visits points from all n lines.

- Day 2

4 A set X of positive integers is said to be iberic if X is a subset of $\{2,3, \ldots, 2018\}$, and whenever m, n are both in $X, \operatorname{gcd}(m, n)$ is also in X. An iberic set is said to be olympic if it is not properly contained in any other iberic set. Find all olympic iberic sets that contain the number 33.

5 Let n be a positive integer. For a permutation $a_{1}, a_{2}, \ldots, a_{n}$ of the numbers $1,2, \ldots, n$ we define

$$
b_{k}=\min _{1 \leq i \leq k} a_{i}+\max _{1 \leq j \leq k} a_{j}
$$

We say that the permutation $a_{1}, a_{2}, \ldots, a_{n}$ is guadiana if the sequence $b_{1}, b_{2}, \ldots, b_{n}$ does not contain two consecutive equal terms. How many guadiana permutations exist?

6 Let $A B C$ be an acute triangle with $A C>A B>B C$. The perpendicular bisectors of $A C$ and $A B$ cut line $B C$ at D and E respectively. Let P and Q be points on lines $A C$ and $A B$ respectively, both different from A, such that $A B=B P$ and $A C=C Q$, and let K be the intersection of lines $E P$ and $D Q$. Let M be the midpoint of $B C$. Show that $\angle D K A=\angle E K M$.

