Art of Problem Solving

AoPS Community

Bangladesh Mathematical Olympiad 2018

www.artofproblemsolving.com/community/c854514
by SINAN_EXPERT, Olympus_mountaineer, Helium, thegreatp.d

1 Solve:

$x^{2}(2-x)^{2}=1+2(1-x)^{2}$
Where x is real number.
2 BdMO National 2018 Higher Secondary P2
$A B$ is a diameter of a circle and $A D \& B C$ are two tangents of that circle. $A C \& B D$ intersect on a point of the circle. $A D=a \& B C=b$. If $a \neq b$ then $A B=$?

3 BdMO National 2018 Higher Secondary P3
Nazia rolls four fair six-sided dice. She doesnt see the results. Her friend Faria tells her that the product of the numbers is 144 . Faria also says the sum of the dice, S satisfies $14 \leq S \leq 18$. Nazia tells Faria that S cannot be one of the numbers in the set $14,15,16,17,18$ if the product is 144 . Which number in the range $14,15,16,17,18$ is an impossible value for S ?

4 Yukihira is counting the minimum number of lines m, that can be drawn on the plane so that they intersect in exactly 200 distinct points. What is m ?

5 Four circles are drawn with the sides of quadrilateral $A B C D$ as diameters. The two circles passing through A meet again at E. The two circles passing through B meet again at F. The two circles passing through C meet again at G. The two circles passing through D meet again at H. Suppose, E, F, G, H are all distinct. Is the quadrilateral $E F G H$ similar to $A B C D$? Show with proof.
$6 \quad$ Find all the pairs of integers (m, n) satisfying the equality $3\left(m^{2}+n^{2}\right)-7(m+n)=-4$

7 Evaluate

$$
\int_{0}^{\pi / 2} \frac{\cos ^{4} x+\sin x \cos ^{3} x+\sin ^{2} x \cos ^{2} x+\sin ^{3} x \cos x}{\sin ^{4} x+\cos ^{4} x+2 \sin x \cos ^{3} x+2 \sin ^{2} x \cos ^{2} x+2 \sin ^{3} x \cos x} d x
$$

8 a tournament is playing between n persons. Everybody plays with everybody one time. There is no draw here. A number k is called n good if there is any tournament such that in that tournament they have any player in the tournament that has lost all of k 's.
prove that

1. n is greater than or equal to $2^{k+1}-1$
2. Find all n such that 2 is a n -good
