AoPS Community

Bangladesh Mathematical Olympiad 2019

www.artofproblemsolving.com/community/c854532
by Olympus_mountaineer, thegreatp.d

1 Find all prime numbers such that the square of the prime number can be written as the sum of cubes of two positive integers.

2 Prove that,if a, b, c are positive real numbers,

$$
\frac{a}{b c}+\frac{b}{c a}+\frac{c}{a b} \geq \frac{2}{a}+\frac{2}{b}-\frac{2}{c}
$$

$3 \quad$ Let α and ω be two circles such that ω goes through the center of $\alpha . \omega$ intersects α at A and B.Let P any point on the circumference ω. The lines $P A$ and $P B$ intersects α again at E and F respectively. Prove that $A B=E F$.
$4 \quad A$ is a positive real number. n is positive integer number.Find the set of possible values of the infinite sum $x_{0}^{n}+x_{1}^{n}+x_{2}^{n}+\ldots$ where $x_{0}, x_{1}, x_{2} \ldots$ are all positive real numbers so that the infinite series $x_{0}+x_{1}+x_{2}+\ldots$ has sum A.

5 Prove that for all positive integers n we can find a permutation of $1,2, \ldots, n$ such that the average of two numbers doesn't appear in-between them.For example $1,3,2$, 4works,but $1,4,2,3$ doesn't because 2 is between 1 and 3 .

6 When a function $f(x)$ is differentiated n times , the function we get id denoted $f^{n}(x)$.If $f(x)=$ $\frac{e^{x}}{x}$. Find the value of

$$
\lim _{n \rightarrow \infty} \frac{f^{2 n}(1)}{(2 n)!}
$$

7 Given three cocentric circles $\omega_{1}, \omega_{2}, \omega_{3}$ with radius r_{1}, r_{2}, r_{3} such that $r_{1}+r_{3} \geq 2 r_{2}$. Constrat a line that intersects $\omega_{1}, \omega_{2}, \omega_{3}$ at A, B, C respectively such that $A B=B C$.
$8 \quad$ The set of natural numbers \mathbb{N} are partitioned into a finite number of subsets.Prove that there exists a subset of S so that for any natural numbers n, there are infinitely many multiples of n in S.

9 Let $A B C D$ is a convex quadrilateral. The internal angle bisectors of $\angle B A C$ and $\angle B D C$ meets at $P . \angle A P B=\angle C P D$. Prove that $A B+B D=A C+C D$.

10 Given 2020 * 2020 chessboard, what is the maximum number of warriors you can put on its cells such that no two warriors attack each other.
Warrior is a special chess piece which can move either 3 steps forward and one step sideward and 2 step forward and 2 step sideward in any direction.

