Art of Problem Solving

AoPS Community

Bangladesh Mathematical Olympiad 2013

www.artofproblemsolving.com/community/c854534
by Olympus_mountaineer, Ramanujan_1729

1 Higher Secondary P1

A polygon is called degenerate if one of its vertices falls on a line that joins its neighboring two vertices. In a pentagon $A B C D E, A B=A E, B C=D E, P$ and Q are midpoints of $A E$ and $A B$ respectively. $P Q \| C D, B D$ is perpendicular to both $A B$ and $D E$. Prove that $A B C D E$ is a degenerate pentagon.

2 Higher Secondary P2
Let g be a function from the set of ordered pairs of real numbers to the same set such that $g(x, y)=-g(y, x)$ for all real numbers x and y. Find a real number r such that $g(x, x)=r$ for all real numbers x.

3 Higher Secondary P3
Let $A B C D E F$ be a regular hexagon with $A B=7 . M$ is the midpoint of $D E . A C$ and $B F$ intersect at $P, A C$ and $B M$ intersect at $Q, A M$ and $B F$ intersect at R. Find the value of $[A P B]+$ $[B Q C]+[A R F]-[P Q M R]$. Here $[X]$ denotes the area of polygon X.

4 Higher Secondary P4
If the fraction $\frac{a}{b}$ is greater than $\frac{31}{17}$ in the least amount while $b<17$, find $\frac{a}{b}$.
5 Higher Secondary P5
Let $x>1$ be an integer such that for any two positive integers a and b, if x divides $a b$ then x either divides a or divides b. Find with proof the number of positive integers that divide x.

6 There are n cities in a country. Between any two cities there is at most one road. Suppose that the total number of roads is n. Prove that there is a city such that starting from there it is possible to come back to it without ever travelling the same road twice.
$7 \quad$ Higher Secondary P7
If there exists a prime number p such that $p+2 q$ is prime for all positive integer q smaller than p, then p is called an "awesome prime". Find the largest "awesome prime" and prove that it is indeed the largest such prime.
$8 \triangle A B C$ is an acute angled triangle. Perpendiculars drawn from its vertices on the opposite sides are $A D, B E$ and $C F$. The line parallel to $D F$ through E meets $B C$ at Y and $B A$ at X. $D F$ and $C A$ meet at Z. Circumcircle of $X Y Z$ meets $A C$ at S. Given, $\angle B=33^{\circ}$. find the angle $\angle F S D$ with proof.

9 Six points A, B, C, D, E, F are chosen on a circle anticlockwise. None of $A B, C D, E F$ is a diameter. Extended $A B$ and $D C$ meet at $Z, C D$ and $F E$ at $X, E F$ and $B A$ at $Y . A C$ and $B F$ meets at $P, C E$ and $B D$ at Q and $A E$ and $D F$ at R. If O is the point of intersection of $Y Q$ and $Z R$, find the $\angle X O P$.

10 Higher Secondary P10
X is a set of n elements. $P_{m}(X)$ is the set of all m element subsets (i.e. subsets that contain exactly m elements) of X. Suppose $P_{m}(X)$ has k elements. Prove that the elements of $P_{m}(X)$ can be ordered in a sequence $A_{1}, A_{2}, \ldots A_{i}, \ldots A_{k}$ such that it satisfies the two conditions:
(A) each element of $P_{m}(X)$ occurs exactly once in the sequence,
(B) for any i such that $0<i<k$, the size of the set $A_{i} \cap A_{i+1}$ is $m-1$.

