AoPS Community

Greece National Olympiad 2019

www.artofproblemsolving.com/community/c854539
by mela_20-15

1 Define the sequnce $\left(a_{n}\right)_{n \geq 1}$ by $a_{1}=1$ and $a_{n}=5 a_{n-1}+3^{n-1}$ for $n \geq 2$. Find the greatest power of 2 that divides $a_{2^{2019}}$.

2 Let $A B C$ be a triangle with $A B<A C<B C$. Let O be the center of it's circumcircle and D be the center of minor arc $\overparen{A B}$. Line $A D$ intersects $B C$ at E and the circumcircle of $B D E$ intersects $A B$ at Z ,$(Z \neq B)$. The circumcircle of $A D Z$ intersects $A C$ at $H,(H \neq A)$, prove that $B E=A H$.

3 Find all positive rational (x, y) that satisfy the equation :

$$
y x^{y}=y+1
$$

4 Given a $n \times m$ grid we play the following game. Initially we place M tokens in each of M empty cells and at the end of the game we need to fill the whole grid with tokens. For that purpose we are allowed to make the following move:If an empty cell shares a common side with at least two other cells that contain a token then we can place a token in this cell.Find the minimum value of M in terms of m, n that enables us to win the game.

