Art of Problem Solving

AoPS Community

District Olympiad 2019

www.artofproblemsolving.com/community/c854553
by Snakes, Filipjack

- \quad Grade 9

1 Let $n \in \mathbb{N}, n \geq 2$ and the positive real numbers a_{1}, a_{2}, a_{n} and $b_{1}, b_{2},, b_{n}$ such that $a_{1}+a_{2}++a_{n}=$ $b_{1}+b_{2}++b_{n}=S$. a) Prove that $\sum_{k=1}^{n} \frac{a_{k}^{2}}{a_{k}+b_{k}} \geq \frac{S}{2}$. b) Prove that $\sum_{k=1}^{n} \frac{a_{k}^{2}}{a_{k}+b_{k}}=\sum_{k=1}^{n} \frac{b_{k}^{2}}{a_{k}+b_{k}}$.

2 Let H be the orthocenter of the acute triangle $A B C$. In the plane of the triangle $A B C$ we consider a point X such that the triangle $X A H$ is right and isosceles, having the hypotenuse $A H$, and B and X are on each part of the line $A H$. Prove that $\overrightarrow{X A}+\overrightarrow{X C}+\overrightarrow{X H}=\overrightarrow{X B}$ if and only if $\angle B A C=45^{\circ}$.

3 Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be a sequence of real numbers such that

$$
2\left(a_{1}+a_{2}++a_{n}\right)=n a_{n+1} \forall n \geq 1 .
$$

a) Prove that the given sequence is an arithmetic progression. b) If $\left\lfloor a_{1}\right\rfloor+\left\lfloor a_{2}\right\rfloor++\left\lfloor a_{n}\right\rfloor=$ $\left\lfloor a_{1}+a_{2}++a_{n}\right\rfloor \forall n \in \mathbb{N}$, prove that every term of the sequence is an integer.

4 Find all positive integers p for which there exists a positive integer n such that $p^{n}+3^{n} \mid p^{n+1}+$ 3^{n+1}.

- \quad Grade 10

1 Find the functions $f: \mathbb{R} \rightarrow(0, \infty)$ which satisfy

$$
2^{-x-y} \leq \frac{f(x) f(y)}{\left(x^{2}+1\right)\left(y^{2}+1\right)} \leq \frac{f(x+y)}{(x+y)^{2}+1}
$$

for all $x, y \in \mathbb{R}$.
2 Let $n \in \mathbb{N}, n \geq 3$. a) Prove that there exist $z_{1}, z_{2},, z_{n} \in \mathbb{C}$ such that

$$
\frac{z_{1}}{z_{2}}+\frac{z_{2}}{z_{3}}++\frac{z_{n-1}}{z_{n}}+\frac{z_{n}}{z_{1}}=n \mathrm{i} .
$$

b) Which are the values of n for which there exist the complex numbers $z_{1}, z_{2},, z_{n}$, of the same modulus, such that

$$
\frac{z_{1}}{z_{2}}+\frac{z_{2}}{z_{3}}++\frac{z_{n-1}}{z_{n}}+\frac{z_{n}}{z_{1}}=n \mathrm{i} ?
$$

AoPS Community

3 Let a, b, c be distinct complex numbers with $|a|=|b|=|c|=1$. If $|a+b-c|^{2}+|b+c-a|^{2}+\mid c+$ $a-\left.b\right|^{2}=12$, prove that the points of affixes a, b, c are the vertices of an equilateral triangle.

4 Find the smallest positive real number λ such that for every numbers $a_{1}, a_{2}, a_{3} \in\left[0, \frac{1}{2}\right]$ and $b_{1}, b_{2}, b_{3} \in(0, \infty)$ with $\sum_{i=1}^{3} a_{i}=\sum_{i=1}^{3} b_{i}=1$, we have

$$
b_{1} b_{2} b_{3} \leq \lambda\left(a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}\right) .
$$

- \quad Grade 11

1 Let $\left(a_{n}\right)_{n \geq 1}$ be a sequence of positive real numbers such that the sequence $\left(a_{n+1}-a_{n}\right)_{n \geq 1}$ is convergent to a non-zero real number. Evaluate the limit

$$
\lim _{n \rightarrow \infty}\left(\frac{a_{n+1}}{a_{n}}\right)^{n} .
$$

2 Let $n \in \mathbb{N}, n \geq 2$, and $A, B \in \mathcal{M}_{n}(\mathbb{R})$. Prove that there exists a complex number z, such that $|z|=1$ and

$$
\Re(\operatorname{det}(A+z B)) \geq \operatorname{det}(A)+\operatorname{det}(B)
$$

where $\Re(w)$ is the real part of the complex number w.
3 Let n be an odd natural number and $A, B \in \mathcal{M}_{n}(\mathbb{C})$ be two matrices such that $(A-B)^{2}=O_{n}$. Prove that $\operatorname{det}(A B-B A)=0$.

4 Let $f:[0, \infty) \rightarrow[0, \infty)$ be a continuous function with $f(0)>0$ and having the property

$$
x-y<f(y)-f(x) \leq 0 \forall 0 \leq x<y .
$$

Prove that: a) There exists a unique $\alpha \in(0, \infty)$ such that $(f \circ f)(\alpha)=\alpha$. b) The sequence $\left(x_{n}\right)_{n \geq 1}$, defined by $x_{1} \geq 0$ and $x_{n+1}=f\left(x_{n}\right) \forall n \in \mathbb{N}$ is convergent.

- \quad Grade 12
$1 \quad$ Let n be a positive integer and G be a finite group of order n. A function $f: G \rightarrow G$ has the (P) property if $f(x y z)=f(x) f(y) f(z) \forall x, y, z \in G$. (a) If n is odd, prove that every function having the (P) property is an endomorphism. (b) If n is even, is the conclusion from (a) still true?

2 Let n be a positive integer and $f:[0,1] \rightarrow \mathbb{R}$ be an integrable function. Prove that there exists a point $c \in\left[0,1-\frac{1}{n}\right]$, such that

$$
\int_{c}^{c+\frac{1}{n}} f(x) \mathrm{d} x=0 \text { or } \int_{0}^{c} f(x) \mathrm{d} x=\int_{c+\frac{1}{n}}^{1} f(x) \mathrm{d} x
$$

3 Let G be a finite group and let $x_{1},, x_{n}$ be an enumeration of its elements. We consider the matrix $\left(a_{i j}\right)_{1 \leq i, j \leq n}$, where $a_{i j}=0$ if $x_{i} x_{j}^{-1}=x_{j} x_{i}^{-1}$, and $a_{i j}=1$ otherwise. Find the parity of the integer $\operatorname{det}\left(a_{i j}\right)$.
$4 \quad$ Let a be a real number, $a>1$. Find the real numbers $b \geq 1$ such that

$$
\lim _{x \rightarrow \infty} \int_{0}^{x}\left(1+t^{a}\right)^{-b} \mathrm{~d} t=1
$$

