Art of Problem Solving

AoPS Community

2019 Turkey Team Selection Test

Turkey Team Selection Test 2019

www.artofproblemsolving.com/community/c856756
by CinarArslan, kymkozan

Day 123 March 2019

1 In each one of the given 2019 boxes, there are 2019 stones numbered as $1,2, \ldots, 2019$ with total mass of 1 kilogram. In all situations satisfying these conditions, if one can pick stones from different boxes with different numbers, with total mass of at least 1 kilogram, in k different ways, what is the maximal of k ?
$2 \quad\left(a_{n}\right)_{n=1}^{\infty}$ is an integer sequence, $a_{1}=1, a_{2}=2$ and for $n \geq 1, a_{n+2}=a_{n+1}^{2}+(n+2) a_{n+1}-a_{n}^{2}-n a_{n}$. a) Prove that the set of primes that divides at least one term of the sequence can not be finite.
b) Find 3 different prime numbers that do not divide any terms of this sequence.

3 In a triangle $A B C, A B>A C$. The foot of the altitude from A to $B C$ is D, the intersection of bisector of B and $A D$ is K, the foot of the altitude from B to $C K$ is M and let $B M$ and $A K$ intersect at point N. The line through N parallel to $D M$ intersects $A C$ at T. Prove that $B M$ is the bisector of angle $\widehat{T B C}$.

Day 224 March 2019
4 For an integer n with b digits, let a subdivisor of n be a positive number which divides a number obtained by removing the r leftmost digits and the l rightmost digits of n for nonnegative integers r, l with $r+l<b$ (For example, the subdivisors of 143 are 1, 2, 3, 4, 7, 11, 13, 14, 43, and 143). For an integer d, let A_{d} be the set of numbers that don't have d as a subdivisor. Find all d, such that A_{d} is finite.
$5 \quad P(x)$ is a nonconstant polynomial with real coefficients and its all roots are real numbers. If there exist a $Q(x)$ polynomial with real coefficients that holds the equality for all x real numbers $(P(x))^{2}=P(Q(x))$,
then prove that all the roots of $P(x)$ are same.
$6 \quad k$ is a positive integer, $R_{n}=-k,-(k-1), \ldots,-1,1, \ldots, k-1, k$ for $n=2 k R_{n}=-k,-(k-1), \ldots,-1,0,1, \ldots, l$ for $n=2 k+1$.
A mechanism consists of some marbles and white/red ropes that connects some marble pairs. If each one of the marbles are written on some numbers from R_{n} with the property that any two connected marbles have different numbers on them, we call it nice labeling. If each one of the marbles are written on some numbers from R_{n} with the properties that any two connected marbles with a white rope have different numbers on them and any two connected marbles with a red rope have two numbers with sum not equal to 0 , we call it precise labeling.
$n \geq 3$, if every mechanism that is labeled nicely with R_{n}, could be labeled precisely with R_{m}, what is the minimal value of m ?

Day 325 March 2019
7 In a triangle $A B C$ with $\angle A C B=90^{\circ} D$ is the foot of the altitude of C. Let E and F be the reflections of D with respect to $A C$ and $B C$. Let O_{1} and O_{2} be the circumcenters of $\triangle E C B$ and $\triangle F C A$. Show that:

$$
2 O_{1} O_{2}=A B
$$

8 Let $p>2$ be a prime number, $m>1$ and n be positive integers such that $\frac{m^{p n}-1}{m^{n}-1}$ is a prime number. Show that:

$$
p n \mid(p-1)^{n}+1
$$

9 Let x, y, z be real numbers such that $y \geq 2 z \geq 4 x$ and

$$
2\left(x^{3}+y^{3}+z^{3}\right)+15\left(x y^{2}+y z^{2}+z x^{2}\right) \geq 16\left(x^{2} y+y^{2} z+z^{2} x\right)+2 x y z
$$

Prove that: $4 x+y \geq 4 z$

