

AoPS Community

2019 Turkey Team Selection Test

Turkey Team Selection Test 2019

www.artofproblemsolving.com/community/c856756 by CinarArslan, kymkozan

Day 1 23 March 2019

- 1 In each one of the given 2019 boxes, there are 2019 stones numbered as 1, 2, ..., 2019 with total mass of 1 kilogram. In all situations satisfying these conditions, if one can pick stones from different boxes with different numbers, with total mass of at least 1 kilogram, in k different ways, what is the maximal of k?
- 2 $(a_n)_{n=1}^{\infty}$ is an integer sequence, $a_1 = 1$, $a_2 = 2$ and for $n \ge 1$, $a_{n+2} = a_{n+1}^2 + (n+2)a_{n+1} a_n^2 na_n$. a) Prove that the set of primes that divides at least one term of the sequence can not be finite. b) Find 3 different prime numbers that do not divide any terms of this sequence.
- 3 In a triangle ABC, AB > AC. The foot of the altitude from A to BC is D, the intersection of bisector of B and AD is K, the foot of the altitude from B to CK is M and let BM and AK intersect at point N. The line through N parallel to DM intersects AC at T. Prove that BM is the bisector of angle \widehat{TBC} .

Day 2 24 March 2019

- **4** For an integer *n* with *b* digits, let a *subdivisor* of *n* be a positive number which divides a number obtained by removing the *r* leftmost digits and the *l* rightmost digits of *n* for nonnegative integers r, l with r + l < b (For example, the subdivisors of 143 are 1, 2, 3, 4, 7, 11, 13, 14, 43, and 143). For an integer *d*, let A_d be the set of numbers that don't have *d* as a subdivisor. Find all *d*, such that A_d is finite.
- 5 P(x) is a nonconstant polynomial with real coefficients and its all roots are real numbers. If there exist a Q(x) polynomial with real coefficients that holds the equality for all x real numbers $(P(x))^2 = P(Q(x))$, then prove that all the roots of P(x) are some

then prove that all the roots of P(x) are same.

6 k is a positive integer, $R_n = -k, -(k-1), ..., -1, 1, ..., k-1, k$ for $n = 2k R_n = -k, -(k-1), ..., -1, 0, 1, ..., k$ for n = 2k + 1.

A mechanism consists of some marbles and white/red ropes that connects some marble pairs. If each one of the marbles are written on some numbers from R_n with the property that any two connected marbles have different numbers on them, we call it *nice labeling*. If each one of the marbles are written on some numbers from R_n with the properties that any two connected marbles with a white rope have different numbers on them and any two connected marbles with a white rope have different numbers on them and any two connected marbles with a red rope have two numbers with sum not equal to 0, we call it *precise labeling*.

AoPS Community

2019 Turkey Team Selection Test

 $n \ge 3$, if every mechanism that is labeled *nicely* with R_n , could be labeled *precisely* with R_m , what is the minimal value of m?

Day 3 25 March 2019

7 In a triangle ABC with $\angle ACB = 90^{\circ} D$ is the foot of the altitude of C. Let E and F be the reflections of D with respect to AC and BC. Let O_1 and O_2 be the circumcenters of $\triangle ECB$ and $\triangle FCA$. Show that:

$$2O_1O_2 = AB$$

8 Let p > 2 be a prime number, m > 1 and n be positive integers such that $\frac{m^{pn}-1}{m^n-1}$ is a prime number. Show that:

$$pn \mid (p-1)^n + 1$$

9 Let x, y, z be real numbers such that $y \ge 2z \ge 4x$ and

$$2(x^{3} + y^{3} + z^{3}) + 15(xy^{2} + yz^{2} + zx^{2}) \ge 16(x^{2}y + y^{2}z + z^{2}x) + 2xyz.$$

Prove that: $4x + y \ge 4z$

AoPS Online 🔯 AoPS Academy 🔯 AoPS 🕬