Art of Problem Solving

AoPS Community

Final Round - Korea 2019

www.artofproblemsolving.com/community/c857084
by PARISsaintGERMAIN, Iminsl, Math1Zzang

Day 1 March 23rd

1 There are n cards such that for each $i=1,2, \cdots n$, there are exactly one card labeled i. Initially the cards are piled with increasing order from top to bottom. There are two operations:

- A : One can take the top card of the pile and move it to the bottom;
- B : One can remove the top card from the pile.

The operation $A B B A B B A B B A B B \cdots$ is repeated until only one card gets left. Let $L(n)$ be the labeled number on the final pile. Find all integers k such that $L(3 k)=k$.

2 For a rectangle $A B C D$ which is not a square, there is O such that O is on the perpendicular bisector of $B D$ and O is in the interior of $\triangle B C D$. Denote by E and F the second intersections of the circle centered at O passing through B, D and $A B, A D$. $B F$ and $D E$ meets at G, and X, Y, Z are the foots of the perpendiculars from G to $A B, B D, D A . L, M, N$ are the foots of the perpendiculars from O to $C D, B D, B C . X Y$ and $M L$ meets at $P, Y Z$ and $M N$ meets at Q. Prove that $B P$ and $D Q$ are parallel.

3 Prove that there exist infinitely many positive integers k such that the sequence $\left\{x_{n}\right\}$ satisfying

$$
x_{1}=1, x_{2}=k+2, x_{n+2}-(k+1) x_{n+1}+x_{n}=0(n \geq 0)
$$

does not contain any prime number.
Day 2 March 24th
4 Let triangle $A B C$ be an acute scalene triangle with orthocenter H. The foot of perpendicular from A to $B C$ is O, and denote K, L by the midpoints of $A B, A C$, respectively. For a point $D(\neq$ $O, B, C)$ on segment $B C$, let E, F be the orthocenters of triangles $A B D, A C D$, respectively, and denote M, N by the midpoints of $D E, D F$. The perpendicular line from M to $K H$ cuts the perpendicular line from N to $L H$ at P. If Q is the midpoint of $E F$, and S is the orthocenter of triangle $H P Q$, then prove that as D varies on $B C$, the ratio $\frac{O S}{O H}, \frac{O Q}{O P}$ remains constant.

5 Find all pairs (p, q) such that the equation

$$
x^{4}+2 p x^{2}+q x+p^{2}-36=0
$$

has exactly 4 integer roots(counting multiplicity).
6 A sequence $\left\{x_{n}\right\}=x_{0}, x_{1}, x_{2}, \cdots$ satisfies $x_{0}=a(1 \leq a \leq 2019, a \in \mathbb{R})$, and

$$
x_{n+1}= \begin{cases}1+1009 x_{n} & \left(x_{n} \leq 2\right) \\ 2021-x_{n} & \left(2<x_{n} \leq 1010\right) \\ 3031-2 x_{n} & (1010<x \leq 1011) \\ 2020-x_{n} & \left(1011<x_{n}\right)\end{cases}
$$

for each non-negative integer n. If there exist some integer $k>1$ such that $x_{k}=a$, call such minimum k a fundamental period of $\left\{x_{n}\right\}$. Find all integers which can be a fundamental period of some seqeunce; and for such minimal odd period $k(>1)$, find all values of $x_{0}=a$ such that the fundamental period of $\left\{x_{n}\right\}$ equals k.

