AoPS Community

Greece Team Selection Test 2018

www.artofproblemsolving.com/community/c857511
by sqing, stergiu, silouan, Muradjl

1 If x, y, z are positive real numbers such that $x+y+z=9 x y z$. Prove that:

$$
\frac{x}{\sqrt{x^{2}+2 y z+2}}+\frac{y}{\sqrt{y^{2}+2 z x+2}}+\frac{z}{\sqrt{z^{2}+2 x y+2}} \geq 1 .
$$

Consider when equality applies.
2 A triangle $A B C$ is inscribed in a circle (C). Let G the centroid of $\triangle A B C$.
We draw the altitudes $A D, B E, C F$ of the given triangle .Rays $A G$ and $G D$ meet (C) at M and N.Prove that points F, E, M, N are concyclic.
$3 \quad$ Find all functions $f: \mathbb{Z}_{>0} \mapsto \mathbb{Z}_{>0}$ such that

$$
x f(x)+(f(y))^{2}+2 x f(y)
$$

is perfect square for all positive integers x, y.
**This problem was proposed by me for the BMO 2017 and it was shortlisted. We then used it in our TST.

4 Let $p \geq 2$ be a prime number. Eduardo and Fernando play the following game making moves alternately: in each move, the current player chooses an index i in the set $\{0,1,2, \ldots, p-1\}$ that was not chosen before by either of the two players and then chooses an element a_{i} from the set $\{0,1,2,3,4,5,6,7,8,9\}$. Eduardo has the first move. The game ends after all the indices have been chosen. Then the following number is computed:

$$
M=a_{0}+a_{1} 10+a_{2} 10^{2}+\cdots+a_{p-1} 10^{p-1}=\sum_{i=0}^{p-1} a_{i} \cdot 10^{i}
$$

The goal of Eduardo is to make M divisible by p, and the goal of Fernando is to prevent this.
Prove that Eduardo has a winning strategy.
Proposed by Amine Natik, Morocco

