AoPS Community

Nordic 2019

www.artofproblemsolving.com/community/c857512
by sqing

1 A set of different positive integers is called meaningful if for any finite nonempty subset the corresponding arithmetic and geometric means are both integers. a) Does there exist a meaningful set which consists of 2019 numbers? b) Does there exist an infinite meaningful set? Note: The geometric mean of the non-negative numbers $a_{1}, a_{2}, \cdots, a_{n}$ is defined as $\sqrt[n]{a_{1} a_{2} \cdots a_{n}}$.

2 Let a, b, c be the side lengths of a right angled triangle with $\mathrm{c} \dot{\mathrm{a}}, \mathrm{b}$. Show that

$$
3<\frac{c^{3}-a^{3}-b^{3}}{c(c-a)(c-b)} \leq \sqrt{2}+2 .
$$

3 The quadrilateral $A B C D$ satisfies $\angle A C D=2 \angle C A B, \angle A C B=2 \angle C A D$ and $C B=C D$. Show that

$$
\angle C A B=\angle C A D .
$$

4 Let n be an integer with $n \geq 3$ and assume that $2 n$ vertices of a regular $(4 n+1)$-gon are coloured. Show that there must exist three of the coloured vertices forming an isosceles triangle.

