AoPS Community

2019 Pan-African Mathematics Olympiad

www.artofproblemsolving.com/community/c858387
by DylanN

1 Let $\left(a_{n}\right)_{n=0}^{\infty}$ be a sequence of real numbers defined as follows:

- $a_{0}=3, a_{1}=2$, and $a_{2}=12$; and
$-2 a_{n+3}-a_{n+2}-8 a_{n+1}+4 a_{n}=0$ for $n \geq 0$.
Show that a_{n} is always a strictly positive integer.
2 Let k be a positive integer. Consider k not necessarily distinct prime numbers such that their product is ten times their sum. What are these primes and what is the value of k ?

3 Let $A B C$ be a triangle, and D, E, F points on the segments $B C, C A$, and $A B$ respectively such that

$$
\frac{B D}{D C}=\frac{C E}{E A}=\frac{A F}{F B} .
$$

Show that if the centres of the circumscribed circles of the triangles $D E F$ and $A B C$ coincide, then $A B C$ is an equilateral triangle.

4 The tangents to the circumcircle of $\triangle A B C$ at B and C meet at D. The circumcircle of $\triangle B C D$ meets sides $A C$ and $A B$ again at E and F respectively. Let O be the circumcentre of $\triangle A B C$. Show that $A O$ is perpendicular to $E F$.

5 A square is divided into N^{2} equal smaller non-overlapping squares, where $N \geq 3$. We are given a broken line which passes through the centres of all the smaller squares (such a broken line may intersect itself).

- Show that it is possible to find a broken line composed of 4 segments for $N=3$.
- Find the minimum number of segments in this broken line for arbitrary N.
$6 \quad$ Find the 2019th strictly positive integer n such that $\binom{2 n}{n}$ is not divisible by 5 .

