AoPS Community

VMO 2019

www.artofproblemsolving.com/community/c861220
by yumeidesu

Day 1 Let $f: \mathbb{R} \rightarrow(0 ;+\infty)$ be a continuous function such that $\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow+\infty} f(x)=0$.
a) Prove that $f(x)$ has the maximum value on \mathbb{R}.
b) Prove that there exist two sequeneces $\left(x_{n}\right),\left(y_{n}\right)$ with $x_{n}<y_{n}, \forall n=1,2,3, \ldots$ such that they have the same limit when n tends to infinity and $f\left(x_{n}\right)=f\left(y_{n}\right)$ for all n.

Day 1 Let (x_{n}) be an integer sequence such that $0 \leq x_{0}<x_{1} \leq 100$ and

$$
x_{n+2}=7 x_{n+1}-x_{n}+280, \forall n \geq 0 .
$$

a) Prove that if $x_{0}=2, x_{1}=3$ then for each positive integer n, the sum of divisors of the following number is divisible by 24

$$
x_{n} x_{n+1}+x_{n+1} x_{n+2}+x_{n+2} x_{n+3}+2018 .
$$

b) Find all pairs of numbers $\left(x_{0}, x_{1}\right)$ such that $x_{n} x_{n+1}+2019$ is a perfect square for infinitely many nonnegative integer numbers n.

Day 1 For each real coefficient polynomial $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$, let

$$
\Gamma(f(x))=a_{0}^{2}+a_{1}^{2}+\cdots+a_{m}^{2} .
$$

Let be given polynomial $P(x)=(x+1)(x+2) \ldots(x+2020)$. Prove that there exists at least 2019 pairwise distinct polynomials $Q_{k}(x)$ with $1 \leq k \leq 2^{2019}$ and each of it satisfies two following conditions:
i) $\operatorname{deg} Q_{k}(x)=2020$.
ii) $\Gamma\left(Q_{k}(x)^{n}\right)=\Gamma\left(P(x)^{n}\right)$ for all positive initeger n.

Day 1 Let $A B C$ be triangle with H is the orthocenter and I is incenter. Denote $A_{1}, A_{2}, B_{1}, B_{2}, C_{1}, C_{2}$ be the points on the rays $A B, A C, B C, C A, C B$, respectively such that

$$
A A_{1}=A A_{2}=B C, B B_{1}=B B_{2}=C A, C C_{1}=C C_{2}=A B
$$

Suppose that $B_{1} B_{2}$ cuts $C_{1} C_{2}$ at $A^{\prime}, C_{1} C_{2}$ cuts $A_{1} A_{2}$ at B^{\prime} and $A_{1} A_{2}$ cuts $B_{1} B_{2}$ at C^{\prime}.
a) Prove that area of triangle $A^{\prime} B^{\prime} C^{\prime}$ is smaller than or equal to the area of triangle $A B C$.
b) Let J be circumcenter of triangle $A^{\prime} B^{\prime} C^{\prime} . A J$ cuts $B C$ at $R, B J$ cuts $C A$ at S and $C J$ cuts $A B$ at T. Suppose that $(A S T),(B T R),(C R S)$ intersect at K. Prove that if triangle $A B C$ is not isosceles then HIJK is a parallelogram.

Day 2 Consider polynomial $f(x)=x^{2}-\alpha x+1$ with $\alpha \in \mathbb{R}$.
a) For $\alpha=\frac{\sqrt{15}}{2}$, let write $f(x)$ as the quotient of two polynomials with nonnegative coefficients.
b) Find all value of α such that $f(x)$ can be written as the quotient of two polynomials with nonnegative coefficients.

Day 2 Let $A B C$ be an acute, nonisosceles triangle with inscribe in a circle (O) and has orthocenter H. Denote M, N, P as the midpoints of sides $B C, C A, A B$ and D, E, F as the feet of the altitudes from vertices A, B, C of triangle $A B C$. Let K as the reflection of H through $B C$. Two lines $D E, M P$ meet at X; two lines $D F, M N$ meet at Y.
a) The line $X Y$ cut the minor arc $B C$ of (O) at Z. Prove that K, Z, E, F are concyclic.
b) Two lines $K E, K F$ cuts (O) second time at S, T. Prove that $B S, C T, X Y$ are concurrent.

Day 2 There are some papers of the size 5×5 with two sides which are divided into unit squares for both sides. One uses n colors to paint each cell on the paper, one cell by one color, such that two cells on the same positions for two sides are painted by the same color. Two painted papers are consider as the same if the color of two corresponding cells are the same. Prove that there are no more than

$$
\frac{1}{8}\left(n^{25}+4 n^{15}+n^{13}+2 n^{7}\right)
$$

pairwise distinct papers that painted by this way.

