AoPS Community

USAJMO 2019

www.artofproblemsolving.com/community/c862373
by green_dog_7983, asp211, kootrapali, CantonMathGuy, trumpeter, hwl0304, rrusczyk

- Day 1 April 17

1 There are $a+b$ bowls arranged in a row, numbered 1 through $a+b$, where a and b are given positive integers. Initially, each of the first a bowls contains an apple, and each of the last b bowls contains a pear.
A legal move consists of moving an apple from bowl i to bowl $i+1$ and a pear from bowl j to bowl $j-1$, provided that the difference $i-j$ is even. We permit multiple fruits in the same bowl at the same time. The goal is to end up with the first b bowls each containing a pear and the last a bowls each containing an apple. Show that this is possible if and only if the product $a b$ is even.
$2 \quad$ Let \mathbb{Z} be the set of all integers. Find all pairs of integers (a, b) for which there exist functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ and $g: \mathbb{Z} \rightarrow \mathbb{Z}$ satisfying

$$
f(g(x))=x+a \quad \text { and } \quad g(f(x))=x+b
$$

for all integers x.
Proposed by Ankan Bhattacharya
3 Let $A B C D$ be a cyclic quadrilateral satisfying $A D^{2}+B C^{2}=A B^{2}$. The diagonals of $A B C D$ intersect at E. Let P be a point on side $\overline{A B}$ satisfying $\angle A P D=\angle B P C$. Show that line $P E$ bisects $\overline{C D}$.

Proposed by Ankan Bhattacharya

- \quad Day 2 April 18

4 Let $A B C$ be a triangle with $\angle A B C$ obtuse. The [i] A-excircle[/ i$]$ is a circle in the exterior of $\triangle A B C$ that is tangent to side $B C$ of the triangle and tangent to the extensions of the other two sides. Let E, F be the feet of the altitudes from B and C to lines $A C$ and $A B$, respectively. Can line $E F$ be tangent to the A-excircle?

Proposed by Ankan Bhattacharya, Zack Chroman, and Anant Mudgal
5 Let n be a nonnegative integer. Determine the number of ways that one can choose $(n+1)^{2}$ sets $S_{i, j} \subseteq\{1,2, \ldots, 2 n\}$, for integers i, j with $0 \leq i, j \leq n$, such that:

- for all $0 \leq i, j \leq n$, the set $S_{i, j}$ has $i+j$ elements; and
- $S_{i, j} \subseteq S_{k, l}$ whenever $0 \leq i \leq k \leq n$ and $0 \leq j \leq l \leq n$.

Proposed by Ricky Liu
6 Two rational numbers $\frac{m}{n}$ and $\frac{n}{m}$ are written on a blackboard, where m and n are relatively prime positive integers. At any point, Evan may pick two of the numbers x and y written on the board and write either their arithmetic mean $\frac{x+y}{2}$ or their harmonic mean $\frac{2 x y}{x+y}$ on the board as well. Find all pairs (m, n) such that Evan can write 1 on the board in finitely many steps.
Proposed by Yannick Yao

- https://data.artofproblemsolving.com/images/maa_logo.png These problems are copyright © Mathematical Association of America (http://maa.org).

