

AoPS Community

2019 USAJMO

USAJMO 2019

www.artofproblemsolving.com/community/c862373

by green_dog_7983, asp211, kootrapali, CantonMathGuy, trumpeter, hwl0304, rrusczyk

-	Day 1 April 17
-	Day I April 17

1 There are a + b bowls arranged in a row, numbered 1 through a + b, where a and b are given positive integers. Initially, each of the first a bowls contains an apple, and each of the last b bowls contains a pear.

A legal move consists of moving an apple from bowl i to bowl i + 1 and a pear from bowl j to bowl j - 1, provided that the difference i - j is even. We permit multiple fruits in the same bowl at the same time. The goal is to end up with the first b bowls each containing a pear and the last a bowls each containing an apple. Show that this is possible if and only if the product ab is even.

2 Let \mathbb{Z} be the set of all integers. Find all pairs of integers (a, b) for which there exist functions $f: \mathbb{Z} \to \mathbb{Z}$ and $g: \mathbb{Z} \to \mathbb{Z}$ satisfying

$$f(g(x)) = x + a$$
 and $g(f(x)) = x + b$

for all integers x.

Proposed by Ankan Bhattacharya

3 Let ABCD be a cyclic quadrilateral satisfying $AD^2 + BC^2 = AB^2$. The diagonals of ABCD intersect at *E*. Let *P* be a point on side \overline{AB} satisfying $\angle APD = \angle BPC$. Show that line *PE* bisects \overline{CD} .

Proposed by Ankan Bhattacharya

- Day 2 April 18

4 Let ABC be a triangle with $\angle ABC$ obtuse. The [i] A-excircle[/i] is a circle in the exterior of $\triangle ABC$ that is tangent to side BC of the triangle and tangent to the extensions of the other two sides. Let E, F be the feet of the altitudes from B and C to lines AC and AB, respectively. Can line EF be tangent to the A-excircle?

Proposed by Ankan Bhattacharya, Zack Chroman, and Anant Mudgal

5 Let *n* be a nonnegative integer. Determine the number of ways that one can choose $(n + 1)^2$ sets $S_{i,j} \subseteq \{1, 2, ..., 2n\}$, for integers i, j with $0 \le i, j \le n$, such that:

- for all $0 \leq i, j \leq n$, the set $S_{i,j}$ has i + j elements; and

- $S_{i,j} \subseteq S_{k,l}$ whenever $0 \le i \le k \le n$ and $0 \le j \le l \le n$.

AoPS Community

Proposed by Ricky Liu

6 Two rational numbers $\frac{m}{n}$ and $\frac{n}{m}$ are written on a blackboard, where m and n are relatively prime positive integers. At any point, Evan may pick two of the numbers x and y written on the board and write either their arithmetic mean $\frac{x+y}{2}$ or their harmonic mean $\frac{2xy}{x+y}$ on the board as well. Find all pairs (m, n) such that Evan can write 1 on the board in finitely many steps.

Proposed by Yannick Yao

- https://data.artofproblemsolving.com/images/maa_logo.png These problems are copyright © Mathematical Association of America (http://maa.org).

AoPS Online 🔯 AoPS Academy 🔯 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.