

AoPS Community

USAMO 2019

www.artofproblemsolving.com/community/c862378

by green_dog_7983, trumpeter, CantonMathGuy, tastymath75025, hwl0304, rrusczyk

-	Day 1 April 17

1 Let \mathbb{N} be the set of positive integers. A function $f : \mathbb{N} \to \mathbb{N}$ satisfies the equation

$$\underbrace{f(f(\dots f(n)))}_{f(n) \text{ times}} = \frac{n^2}{f(f(n))}$$

for all positive integers n. Given this information, determine all possible values of f(1000).

Proposed by Evan Chen

2 Let ABCD be a cyclic quadrilateral satisfying $AD^2 + BC^2 = AB^2$. The diagonals of ABCD intersect at *E*. Let *P* be a point on side \overline{AB} satisfying $\angle APD = \angle BPC$. Show that line *PE* bisects \overline{CD} .

Proposed by Ankan Bhattacharya

3 Let *K* be the set of all positive integers that do not contain the digit 7 in their base-10 representation. Find all polynomials *f* with nonnegative integer coefficients such that $f(n) \in K$ whenever $n \in K$.

Proposed by Titu Andreescu, Cosmin Pohoata, and Vlad Matei

-	Day 2 April 18	

4 Let *n* be a nonnegative integer. Determine the number of ways that one can choose $(n + 1)^2$ sets $S_{i,j} \subseteq \{1, 2, ..., 2n\}$, for integers i, j with $0 \le i, j \le n$, such that:

- for all $0 \le i, j \le n$, the set $S_{i,j}$ has i + j elements; and - $S_{i,j} \subseteq S_{k,l}$ whenever $0 \le i \le k \le n$ and $0 \le j \le l \le n$.

Proposed by Ricky Liu

5 Two rational numbers $\frac{m}{n}$ and $\frac{n}{m}$ are written on a blackboard, where m and n are relatively prime positive integers. At any point, Evan may pick two of the numbers x and y written on the board and write either their arithmetic mean $\frac{x+y}{2}$ or their harmonic mean $\frac{2xy}{x+y}$ on the board as well. Find all pairs (m, n) such that Evan can write 1 on the board in finitely many steps.

Proposed by Yannick Yao

6	Find all polynomials P with real coefficients such that	
	$\frac{P(x)}{yz} + \frac{P(y)}{zx} + \frac{P(z)}{xy} = P(x-y) + P(y-z) + P(z-x)$	
	holds for all nonzero real numbers x, y, z satisfying $2xyz = x + y + z$.	
	Proposed by Titu Andreescu and Gabriel Dospinescu	
-	https://data.artofproblemsolving.com/images/maa_logo.png These problems are copy- right © Mathematical Association of America (http://maa.org).	

AoPS Online 🔇 AoPS Academy 🔇 AoPS 🕬