AoPS Community

USAMO 2019

www.artofproblemsolving.com/community/c862378
by green_dog_7983, trumpeter, CantonMathGuy, tastymath75025, hwl0304, rrusczyk

- Day 1 April 17
$1 \quad$ Let \mathbb{N} be the set of positive integers. A function $f: \mathbb{N} \rightarrow \mathbb{N}$ satisfies the equation

$$
\underbrace{f(f(\ldots f}_{f(n) \text { times }}(n) \ldots))=\frac{n^{2}}{f(f(n))}
$$

for all positive integers n. Given this information, determine all possible values of $f(1000)$.
Proposed by Evan Chen
2 Let $A B C D$ be a cyclic quadrilateral satisfying $A D^{2}+B C^{2}=A B^{2}$. The diagonals of $A B C D$ intersect at E. Let P be a point on side $\overline{A B}$ satisfying $\angle A P D=\angle B P C$. Show that line $P E$ bisects $\overline{C D}$.

Proposed by Ankan Bhattacharya
3 Let K be the set of all positive integers that do not contain the digit 7 in their base-10 representation. Find all polynomials f with nonnegative integer coefficients such that $f(n) \in K$ whenever $n \in K$.

Proposed by Titu Andreescu, Cosmin Pohoata, and Vlad Matei

- \quad Day 2 April 18

4 Let n be a nonnegative integer. Determine the number of ways that one can choose $(n+1)^{2}$ sets $S_{i, j} \subseteq\{1,2, \ldots, 2 n\}$, for integers i, j with $0 \leq i, j \leq n$, such that:

- for all $0 \leq i, j \leq n$, the set $S_{i, j}$ has $i+j$ elements; and
- $S_{i, j} \subseteq S_{k, l}$ whenever $0 \leq i \leq k \leq n$ and $0 \leq j \leq l \leq n$.

Proposed by Ricky Liu
5 Two rational numbers $\frac{m}{n}$ and $\frac{n}{m}$ are written on a blackboard, where m and n are relatively prime positive integers. At any point, Evan may pick two of the numbers x and y written on the board and write either their arithmetic mean $\frac{x+y}{2}$ or their harmonic mean $\frac{2 x y}{x+y}$ on the board as well. Find all pairs (m, n) such that Evan can write 1 on the board in finitely many steps.
Proposed by Yannick Yao
$6 \quad$ Find all polynomials P with real coefficients such that

$$
\frac{P(x)}{y z}+\frac{P(y)}{z x}+\frac{P(z)}{x y}=P(x-y)+P(y-z)+P(z-x)
$$

holds for all nonzero real numbers x, y, z satisfying $2 x y z=x+y+z$.
Proposed by Titu Andreescu and Gabriel Dospinescu

- https://data.artofproblemsolving.com/images/maa_logo.png These problems are copyright © Mathematical Association of America (http://maa. org).

